Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Последовательность чисел a1, a2,..., an... образуется следующим образом:

a1 = a2 = 1; an = $\displaystyle {\frac{a_{n-1}^2+2}{a_{n-2}}}$        (n$\displaystyle \ge$3).

Доказать, что все числа в последовательности — целые.

Вниз   Решение


На доске выписаны числа 1, 2, ..., 100. На каждом этапе одновременно стираются все числа, не имеющие среди нестёртых чисел делителей, кроме себя самого. Например, на первом этапе стирается только число 1. Какие числа будут стёрты на последнем этапе?

ВверхВниз   Решение


На боковых сторонах AB и CD трапеции ABCD отмечены точки P и Q так, что прямая PQ параллельна AD, а отрезок PQ делится диагоналями трапеции на три равные части. Найдите длину оонования BC, если известно, что  AD = a,  PQ = m,  а точка пересечения диагоналей трапеции лежит внутри четырёхугольника BPCQ.

ВверхВниз   Решение


Автор: Фольклор

Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Сколько существует треугольников с вершинами в отмеченных точках?

ВверхВниз   Решение


К числу справа приписывают тройки. Докажите, что когда-нибудь получится составное число.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 99]      



Задача 30642  (#056)

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Найдите все натуральные числа, которые увеличиваются в 9 раз, если между цифрой единиц и цифрой десятков вставить ноль.

Прислать комментарий     Решение


Задача 30643  (#057)

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Между цифрами двузначного числа, кратного трем, вставили нуль, и к полученному трехзначному числу прибавили удвоенную цифру его сотен. Получилось число, в 9 раз большее первоначального. Найдите исходное число.

Прислать комментарий     Решение


Задача 30644  (#058)

Тема:   [ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

Найдите четырехзначное число, являющееся точным квадратом, первые две цифры которого равны между собой и последние две цифры которого также равны между собой.

Прислать комментарий     Решение


Задача 30645  (#059)

Тема:   [ Десятичная система счисления ]
Сложность: 4
Классы: 8,9

Найдите все трехзначные числа, каждая натуральная степень которых оканчивается на три цифры, составляющие первоначальное число.

Прислать комментарий     Решение


Задача 30646  (#060)

Тема:   [ Десятичная система счисления ]
Сложность: 4+
Классы: 8,9

К числу справа приписывают тройки. Докажите, что когда-нибудь получится составное число.

Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 99]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .