ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Имеется 4 монеты, из которых 3 – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за три взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных?

Вниз   Решение


Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов.
Докажите, что есть три вершины, все рёбра между которыми – одного цвета.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 31099  (#31)

Тема:   [ Деревья ]
Сложность: 4-
Классы: 6,7,8

Есть волейбольная сетка 5×10. Какое максимальное число веревок, её составляющих, можно разрезать так, чтобы она не распалась?

Прислать комментарий     Решение

Задача 21995  (#32)

Темы:   [ Принцип Дирихле (прочее) ]
[ Теория графов (прочее) ]
Сложность: 3
Классы: 6,7,8

Докажите, что среди любых шести человек есть либо трое попарно знакомых, либо трое попарно незнакомых.

Прислать комментарий     Решение

Задача 30815  (#33)

Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Раскраски ]
Сложность: 3
Классы: 7,8

Каждое из рёбер полного графа с 6 вершинами покрашено в один из двух цветов.
Докажите, что есть три вершины, все рёбра между которыми – одного цвета.

Прислать комментарий     Решение

Задача 30816  (#34)

Темы:   [ Теория графов (прочее) ]
[ Раскраски ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 7,8

Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов.
Докажите, что есть три вершины, все рёбра между которыми – одного цвета.

Прислать комментарий     Решение

Задача 31104  (#36)

Темы:   [ Теория графов (прочее) ]
[ Степень вершины ]
[ Принцип крайнего (прочее) ]
[ Неравенство Коши ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 6,7,8

а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
б) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет полного подграфа из четырёх вершин?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .