Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Разложите функции     и     (n ≥ 1)  в цепные дроби.
Определения многочленов Фибоначчи Fn(x) и Люка Ln(x) смотри, например, здесь.

Вниз   Решение


В поселке 100 домов. Какое наибольшее число замкнутых не пересекающихся заборов можно построить, чтобы каждый забор огораживал хотя бы один дом и никакие два забора не огораживали бы одну и ту же совокупность домов?

ВверхВниз   Решение


В ряд выписаны числа от 1 до 9999. Как вычеркнуть из этой записи 100 цифр так, чтобы оставшееся число было a) максимальным b) минимальным?

ВверхВниз   Решение


Доказать, что для любого n
  а)  72n – 42n  делится на 33;
  б)  36n – 26n  делится на 35.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 31241  (#11)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Найти остаток  1316 – 255·515  от деления на 3.

Прислать комментарий     Решение

Задача 31242  (#12)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Доказать, что  776776 + 777777 + 778778  делится на 3.

Прислать комментарий     Решение

Задача 31243  (#13)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Найти остаток  418 + 517  от деления на 3.

Прислать комментарий     Решение

Задача 31244  (#14)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Найти остаток  (116 + 1717)21·749  от деления на 8.

Прислать комментарий     Решение

Задача 31245  (#15)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 6,7,8

Доказать, что для любого n
  а)  72n – 42n  делится на 33;
  б)  36n – 26n  делится на 35.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .