ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Задан числовой массив А[1:n].Найти и отпечатать такую перестановку i1 , i2 ,..., in чисел1,2,...,n, чтобы

Вниз   Решение


Автор: Saghafian M.

Найдите все такие конфигурации из шести точек общего положения на плоскости, что треугольник, образованный любыми тремя из них, равен треугольнику, образованному тремя остальными.

ВверхВниз   Решение


Докажите, что любой выпуклый шестиугольник ABCDEF, в котором каждая сторона параллельна противоположной стороне, аффинным преобразованием можно перевести в шестиугольник с равными диагоналями AD, BE и CF.

ВверхВниз   Решение


Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?

ВверхВниз   Решение


Квадрат раскрашен в два цвета. Можно любой прямоугольник перекрашивать в преобладающий в нем цвет. Доказать, что такими операциями можно сделать весь квадрат одноцветным.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 31357  (#13)

Тема:   [ Разрезания, разбиения, покрытия и замощения ]
Сложность: 2+
Классы: 6,7,8

Как разрезать на единичные квадраты квадрат a) b) за наименьшее число разрезов. (Части при разрезании можно накладывать друг на друга).

Прислать комментарий     Решение


Задача 31358  (#14)

Тема:   [ Необычные конструкции ]
Сложность: 2
Классы: 5,6,7,8

Расставьте в ряд числа от 1 до 100 так, чтобы любые два соседних отличались по крайней мере на 50.

Прислать комментарий     Решение


Задача 30826  (#15)

Тема:   [ Ориентированные графы ]
Сложность: 3+
Классы: 8

Несколько команд сыграли между собой круговой турнир по волейболу. Будем говорить, что команда А сильнее команды B, если либо А выиграла у B, либо существует такая команда C, что А выиграла у C, а C – у B.
  а) Докажите, что есть команда, которая сильнее всех.
  б) Докажите, что команда, выигравшая турнир, сильнее всех.

Прислать комментарий     Решение

Задача 31360  (#16)

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 2+
Классы: 5,6,7,8

30 команд сыграли турнир по олимпийской системе. Сколько всего было сыграно матчей?

Прислать комментарий     Решение

Задача 31361  (#17)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2
Классы: 6,7,8

Квадрат раскрашен в два цвета. Можно любой прямоугольник перекрашивать в преобладающий в нем цвет. Доказать, что такими операциями можно сделать весь квадрат одноцветным.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .