Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

12 шахматистов сыграли турнир в один круг. Потом каждый из них написал 12 списков. В первом только он, в (k+1)-м – те, кто были в k-м и те, у кого они выиграли. Оказалось, что у каждого шахматиста 12-й список отличается от 11-го. Сколько было ничьих?

Вниз   Решение


a ≡ 68 (mod 1967),   a ≡ 69 (mod 1968).  Найти остаток от деления a на 14.

ВверхВниз   Решение


Доказать, что при чётном n   20n + 16n – 3n – 1  делится на 323.

ВверхВниз   Решение


12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед.
Доказать, что найдутся такие команды А, В, С, что А выиграла у В, В выиграла у С, а С – у А.

ВверхВниз   Решение


Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев.
Доказать, что шестеренки можно повернуть так, что они образуют полноценную шестеренку (без дырок).

ВверхВниз   Решение


Доказать, что для любого n  1/81 (10n – 1) – n/9  – целое число.

ВверхВниз   Решение


30 команд сыграли турнир по олимпийской системе. Сколько всего было сыграно матчей?

ВверхВниз   Решение


Несколько команд сыграли между собой круговой турнир по волейболу. Будем говорить, что команда А сильнее команды B, если либо А выиграла у B, либо существует такая команда C, что А выиграла у C, а C – у B.
  а) Докажите, что есть команда, которая сильнее всех.
  б) Докажите, что команда, выигравшая турнир, сильнее всех.

ВверхВниз   Решение


Имеется бесконечная арифметическая прогрессия с натуральными членами. Доказать, что найдётся член, в котором есть 100 девяток подряд.

ВверхВниз   Решение


Сколько решений в натуральных числах имеет уравнение   [x/10] = [x/11] + 1?

ВверхВниз   Решение


Докажите, что множество простых чисел вида  p = 6k + 5  бесконечно.

ВверхВниз   Решение


Несколько человек стоят прямоугольником. В каждой шеренге выбрали самого нижнего, в каждом ряду самого высокого. Кто выше: самый низкий из высоких или самый высокий из низких?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 30]      



Задача 31373  (#29)

Темы:   [ Ориентированные графы ]
[ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
Сложность: 4-
Классы: 6,7,8,9

12 шахматистов сыграли турнир в один круг. Потом каждый из них написал 12 списков. В первом только он, в (k+1)-м – те, кто были в k-м и те, у кого они выиграли. Оказалось, что у каждого шахматиста 12-й список отличается от 11-го. Сколько было ничьих?

Прислать комментарий     Решение

Задача 31374  (#30)

Темы:   [ Индукция (прочее) ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4
Классы: 6,7,8,9

В поселке 100 домов. Какое наибольшее число замкнутых не пересекающихся заборов можно построить, чтобы каждый забор огораживал хотя бы один дом и никакие два забора не огораживали бы одну и ту же совокупность домов?

Прислать комментарий     Решение

Задача 31375  (#31)

Темы:   [ Отношение порядка ]
[ Математическая логика (прочее) ]
Сложность: 3+
Классы: 6,7,8

Несколько человек стоят прямоугольником. В каждой шеренге выбрали самого нижнего, в каждом ряду самого высокого. Кто выше: самый низкий из высоких или самый высокий из низких?

Прислать комментарий     Решение


Задача 31376  (#32)

Тема:   [ Отношение порядка ]
Сложность: 4-
Классы: 6,7,8,9

Несколько человек построились в два ряда. Каждый во втором ряду выше стоящего перед ним. Доказать, что если каждый ряд построить по росту, то это свойство сохранится.

Прислать комментарий     Решение


Задача 31377  (#33)

Темы:   [ Правило произведения ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7,8,9

Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев.
Доказать, что шестеренки можно повернуть так, что они образуют полноценную шестеренку (без дырок).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .