ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Докажите, что сумма

cos 32x + a31cos 31x + a30cos 30x + ... + a1cos x

принимает как положительные, так и отрицательные значения.

Вниз   Решение


Дано натуральное (целое неотрицательное) число а и целое положительное число d. Вычислить частное q и остаток r при делении а на d, не используя операций div и mod.

ВверхВниз   Решение


Два различных параллелограмма ABCD и  A1B1C1D1 с соответственно параллельными сторонами вписаны в четырехугольник PQRS (точки A и A1 лежат на стороне PQB и B1 — на QR и т. д.). Докажите, что диагонали четырехугольника параллельны сторонам параллелограммов.

ВверхВниз   Решение


На доске написаны числа 0, 1, 0, 0. За один шаг разрешается прибавлять единицу к любым двум из них.
Можно ли, повторяя эту операцию, добиться, чтобы все числа стали равными?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 32017  (#01)

Темы:   [ Делимость чисел. Общие свойства ]
[ Математическая логика (прочее) ]
Сложность: 2+
Классы: 6,7,8

Из утверждений "число a делится на 2", "число a делится на 4", "число a делится на 12" и "число a делится на 24" три верных, а одно неверное. Какое?

Прислать комментарий     Решение

Задача 32018  (#02)

Темы:   [ Четность и нечетность ]
[ Инварианты ]
Сложность: 3
Классы: 6,7,8

На доске написаны числа 0, 1, 0, 0. За один шаг разрешается прибавлять единицу к любым двум из них.
Можно ли, повторяя эту операцию, добиться, чтобы все числа стали равными?

Прислать комментарий     Решение

Задача 32019  (#03)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Несколько ящиков вместе весят 10 тонн, причём каждый из них весит не более одной тонны.
Сколько трёхтонок заведомо достаточно, чтобы увезти этот груз?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .