ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 2004-м? Медиану AA0 треугольника ABC отложили от точки A0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A1. Аналогично строятся точки B1 и C1. Найдите углы треугольника A1B1C1, если углы треугольника ABC равны 30°, 30° и 120°. Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник. В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов. Докажите, что если натуральное число N представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.
При каких натуральных n для любых чисел α , β , γ ,
являющихся величинами углов остроугольного треугольника, справедливо неравенство
В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими k авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на k + 2 группы так, что никакие два города из одной группы не соединены авиалинией. а) Пусть
Подруги. Три подруги были на выпускном балу в белом, красном и голубом платье. Их туфли были тех же трёх цветов. Только у Тамары цвета платья и туфель совпадали. Валя была в белых туфлях. Ни платье, ни туфли Лиды не были красными. Определите цвета платьев и туфель у подруг. Пусть a, b и c – длины сторон треугольника площади S; α1, β1 и γ1 – углы некоторого другого треугольника. Докажите, что а) Докажите, что все окружности и прямые задаются уравнениями вида
Az
где A и D — вещественные числа, а c — комплексное число. Наоборот,
докажите, что любое уравнение такого вида задает либо окружность, либо прямую,
либо точку, либо пустое множество.
б) Докажите, что при инверсии окружности и прямые переходят в окружности и прямые. Существует ли треугольник, градусная мера каждого угла которого выражается простым числом? В треугольнике ABC высота AH проходит через середину медианы BM. Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 7526]
Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке?
Докажите, что найдутся двадцать москвичей, имеющих одинаковое число волос на голове.
Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
Зашифрование сообщения состоит в замене букв исходного текста на пары цифр в соответствии с некоторой (известной только отправителю и получателю) таблицей, в которой разным буквам алфавита соответствуют разные пары цифр. Криптографу дали задание восстановить зашифрованный текст. В каком случае ему будет легче выполнить задание: если известно, что первое слово второй строки – "термометр" или что первое слово третьей строки – "ремонт"?
Докажите, что центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке