ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) 10 точек, делящие окружность на 10 равных дуг, попарно соединены пятью хордами. Обязательно ли среди них найдутся две хорды одинаковой длины?

б) 20 точек, делящие окружность на 20 равных дуг, попарно соединены 10 хордами. Докажите, что среди них обязательно найдутся две хорды одинаковой длины?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 35723  (#М789)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Четность и нечетность ]
[ Правильные многоугольники ]
Сложность: 4
Классы: 9,10

а) 10 точек, делящие окружность на 10 равных дуг, попарно соединены пятью хордами. Обязательно ли среди них найдутся две хорды одинаковой длины?

б) 20 точек, делящие окружность на 20 равных дуг, попарно соединены 10 хордами. Докажите, что среди них обязательно найдутся две хорды одинаковой длины?

Прислать комментарий     Решение

Задача 79406  (#М791)

Темы:   [ Теория алгоритмов (прочее) ]
[ Арифметические действия. Числовые тождества ]
[ Процессы и операции ]
Сложность: 3+
Классы: 7,8,9

Петя купил в магазине "Машины Тьюринга и другие вычислительные устройства" микрокалькулятор, который может выполнять следующие операции: по любым числам x и y он вычисляет x + y, xy и $ {\frac{1}{x}}$ (при x ≠ 0). Петя утверждает, что он может возвести любое положительное число в квадрат с помощью своего микрокалькулятора, сделав не более 6 операций. А вы можете это сделать? Если да, то попробуйте перемножить любые два положительных числа, сделав не более 20 операций (промежуточные результаты можно записывать, неоднократно используя их в вычислениях).
Прислать комментарий     Решение


Задача 97790  (#М801)

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Подсчет двумя способами ]
[ Показательные функции и логарифмы (прочее) ]
[ Раскладки и разбиения ]
Сложность: 4
Классы: 10,11

Докажите для каждого натурального числа  n > 1  равенство:   [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn].

Прислать комментарий     Решение

Задача 55380  (#М807а)

Темы:   [ Векторы ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Из произвольной точки M внутри равностороннего треугольника опущены перпендикуляры MK1, MK2, MK3 на его стороны. Докажите, что

$\displaystyle \overrightarrow{MK_{1}} $ + $\displaystyle \overrightarrow{MK_{2}} $ + $\displaystyle \overrightarrow{MK_{3}} $ = $\displaystyle {\textstyle\frac{3}{2}}$ . $\displaystyle \overrightarrow{MO}$,

где O — центр треугольника.

Прислать комментарий     Решение


Задача 97800  (#М816)

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9

Натуральные числа M и K отличаются перестановкой цифр.
Доказать, что
  а) сумма цифр числа 2M равна сумме цифр числа 2K;
  б) сумма цифр числа M/2  равна сумме цифр числа K/2  (если M и K чётны);
  в) сумма цифр числа 5M равна сумме цифр числа 5K.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .