Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?

Вниз   Решение


Конструктор состоит из набора прямоугольных параллелепипедов. Все их можно поместить в одну коробку, также имеющую форму прямоугольного параллелепипеда. В бракованном наборе одно из измерений каждого параллелепипеда оказалось меньше стандартного. Всегда ли у коробки, в которую укладывается набор, тоже можно уменьшить одно из измерений (параллелепипеды укладываются в коробку так, что их рёбра параллельны рёбрам коробки)?

ВверхВниз   Решение


С выпуклым четырехугольником ABCD проделывают следующую операцию: одну из данных вершин меняют на точку, симметричную этой вершине относительно серединного перпендикуляра к диагонали (концом которой она не является), обозначив новую точку прежней буквой. Эту операцию последовательно применяют к вершинам A, B, C, D, A, B,... - всего n раз. Назовем четырехугольник допустимым, если его стороны попарно различны и после применения любого числа операций он остается выпуклым. Существует ли:
а) допустимый четырехугольник, который после n<5 операций становится равным исходному;
б) такое число n0, что любой допустимый четырехугольник после n=n0 операций становится равным исходному?

ВверхВниз   Решение


Пусть AH – высота остроугольного треугольника ABC, а точки K и L – проекции H на стороны AB и AC. Описанная окружность Ω треугольника ABC пересекает прямую KL в точках P и Q, а прямую AH – в точках A и T. Докажите, что точка H является центром вписанной окружности треугольника PQT.

ВверхВниз   Решение


На клетчатой бумаге нарисован прямоугольник, стороны которого образуют углы в 45° с линиями сетки, а вершины не лежат на линиях сетки.
Может ли каждую сторону прямоугольника пересекать нечётное число линий сетки?

ВверхВниз   Решение


В выпуклом пятиугольнике P провели все диагонали, в результате чего он оказался разбитым на десять треугольников и один пятиугольник P'. Из суммы площадей треугольников, прилегающих к сторонам P, вычли площадь P'; получилось число N. Совершив те же операции с пятиугольником P', получили число N'. Докажите, что  N > N'.

ВверхВниз   Решение


Дан треугольник ABC . На прямой AC отмечена точка B1 так, что AB=AB1 , при этом B1 и C находятся по одну сторону от A . Через точки C , B1 и основание биссектрисы угла A треугольника ABC проводится окружность , вторично пересекающая окружность, описанную около треугольника ABC , в точке Q . Докажите, что касательная, проведённая к в точке Q , параллельна AC .

ВверхВниз   Решение


На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что  A3B4 || AB.

ВверхВниз   Решение


Докажите для положительных значений переменных неравенство  (a + b + c)(a² + b² + c²) ≥ 9abc.

ВверхВниз   Решение


Многоугольник  A1A2...A2n вписанный. Про все пары его противоположных сторон, кроме одной, известно, что они параллельны. Докажите, что при n нечетном оставшаяся пара сторон тоже параллельна, а при n четном оставшаяся пара сторон равна по длине.

ВверхВниз   Решение


На окружности даны точки A, B, M и N. Из точки M проведены хорды MA1 и MB1, перпендикулярные прямым NB и NA соответственно. Докажите, что  AA1 || BB1.

ВверхВниз   Решение


Из точки A проведены касательные AB и AC к окружности с центром O. Через точку X отрезка BC проведена прямая KL, перпендикулярная XO (точки K и L лежат на прямых AB и AC). Докажите, что KX = XL.

ВверхВниз   Решение


Гипотенуза прямоугольного треугольника равна a, один из острых углов равен α.
Найдите расстояния от основания высоты, опущенной на гипотенузу, до катетов треугольника.

ВверхВниз   Решение


Ковровая дорожка покрывает лестницу из 9 ступенек. Длина и высота лестницы равны 2 метрам. Хватит ли этой ковровой дорожки, чтобы покрыть лестницу из 10 ступенек длиной и высотой 2 метра?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 188]      



Задача 35744

Тема:   [ Подсчет двумя способами ]
Сложность: 2
Классы: 6,7,8

Ковровая дорожка покрывает лестницу из 9 ступенек. Длина и высота лестницы равны 2 метрам. Хватит ли этой ковровой дорожки, чтобы покрыть лестницу из 10 ступенек длиной и высотой 2 метра?
Прислать комментарий     Решение


Задача 104039

Тема:   [ Задачи-шутки ]
Сложность: 2
Классы: 7,8,9

Назовем натуральное число "изумительным", если оно имеет вид ab + ba (где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 25 + 52. Является ли изумительным число 2006?
Прислать комментарий     Решение


Задача 108408

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 7,8,9

На электронных часах Казанского вокзала высвечиваются часы и минуты (например, 17:36). Сколько времени в течение суток на них
а) высвечивается цифра 2;
б) высвечиваются цифры 5 и 7 одновременно?
Прислать комментарий     Решение


Задача 21972

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2+
Классы: 6,7,8

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Прислать комментарий     Решение

Задача 21977

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что в любой компании из пяти человек есть двое, имеющие одинаковое число знакомых в этой компании.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 188]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .