ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вам пришло зашифрованное сообщение: Ф В М Ё Ж Т И В Ф Ю Найдите исходное сообщение, если известно, что шифрпреобразование заключалось в следующем. Пусть x1, x2 - корни трехчлена x2+3x+1. К порядковому номеру каждой буквы в стандартном русском алфавите (33 буквы) прибавлялось значение многочлена f(x)=x6+3x5+x4+x3+4x2+4x+3, вычисленное либо при x=x1, либо при x=x2 (в неизвестном нам порядке), а затем полученное число заменялось соответствующей ему буквой. (Задача с сайта www.cryptography.ru.)

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 35764

Темы:   [ Задачи-шутки ]
[ Криптография ]
Сложность: 2
Классы: 6,7,8

Зашифрование сообщения состоит в замене букв исходного текста на пары цифр в соответствии с некоторой (известной только отправителю и получателю) таблицей, в которой разным буквам алфавита соответствуют разные пары цифр. Криптографу дали задание восстановить зашифрованный текст. В каком случае ему будет легче выполнить задание: если известно, что первое слово второй строки – "термометр" или что первое слово третьей строки – "ремонт"?

Прислать комментарий     Решение

Задача 35667

Темы:   [ Правило произведения ]
[ Криптография ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 8,9

Ключом шифра, называемого "поворотная решетка", является трафарет, изготовленный из квадратного листа клетчатой бумаги размера n×n
(n чётно). Некоторые из клеток вырезаются. Одна из сторон трафарета помечена. При наложении этого трафарета на чистый лист бумаги четырьмя возможными способами (помеченной стороной вверх, вправо, вниз, влево) его вырезы полностью покрывают всю площадь квадрата, причём каждая клетка оказывается под вырезом ровно один раз. Буквы сообщения, имеющего длину n², последовательно вписываются в вырезы трафарета, сначала наложенного на чистый лист бумаги помеченной стороной вверх. После заполнения всех вырезов трафарета буквами сообщения трафарет располагается в следующем положении и т. д. После снятия трафарета на листе бумаги оказывается зашифрованное сообщение.
Найдите число различных ключей для произвольного чётного числа n.

Прислать комментарий     Решение

Задача 35599

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
[ Криптография ]
Сложность: 3
Классы: 9,10

При установке кодового замка каждой из 26 латинских букв, расположенных на его клавиатуре, сопоставляется произвольное натуральное число, известное лишь обладателю замка. Разным буквам сопоставляются не обязательно разные числа. После набора произвольной комбинации попарно различных букв происходит суммирование числовых значений, соответствующих набранным буквам. Замок открывается, если сумма делится на 26. Докажите, что для любых числовых значений букв существует комбинация, открывающая замок.

Прислать комментарий     Решение

Задача 35683

Темы:   [ Перебор случаев ]
[ Криптография ]
Сложность: 3
Классы: 7,8,9

Буквы русского алфавита занумерованы в соответствии с таблицей: $ \begin{array}{cccccccccccccccccccccc} А & Б & В & Г & Д & Е & Ж & З & И & К & ... & Ф & Х & Ц & Ч & Ш & Щ & Ь & Ы & Э & Ю & Я \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & ... & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \end{array} $ Для зашифрования сообщения, состоящего из n букв, выбирается ключ K - некоторая последовательность из n букв приведенного выше алфавита. Зашифрование каждой буквы сообщения состоит в сложении ее номера в таблице с номером соответствующей буквы ключевой последовательности и замене полученной суммы на букву алфавита, номер которой имеет тот же остаток от деления на 30, что и эта сумма. Прочтите шифрованное сообщение: РБЬНПТСИТСРРЕЗОХ, если известно, что шифрующая последовательность не содержала никаких букв, кроме А, Б и В. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 35751

Темы:   [ Теория алгоритмов (прочее) ]
[ Формулы сокращенного умножения ]
[ Криптография ]
Сложность: 3
Классы: 8,9

Вам пришло зашифрованное сообщение: Ф В М Ё Ж Т И В Ф Ю Найдите исходное сообщение, если известно, что шифрпреобразование заключалось в следующем. Пусть x1, x2 - корни трехчлена x2+3x+1. К порядковому номеру каждой буквы в стандартном русском алфавите (33 буквы) прибавлялось значение многочлена f(x)=x6+3x5+x4+x3+4x2+4x+3, вычисленное либо при x=x1, либо при x=x2 (в неизвестном нам порядке), а затем полученное число заменялось соответствующей ему буквой. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .