ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На диагонали AC квадрата ABCD взята точка M, причём  AM = AB.  Через точку M проведена прямая, перпендикулярная прямой AC и пересекающая BC в точке H. Докажите, что  BH = HM = MC.

   Решение

Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 6702]      



Задача 53333

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 3-
Классы: 8,9

Докажите равенство треугольников по стороне, медиане, проведённой к этой стороне, и углам, которые образует медиана с этой стороной.

Прислать комментарий     Решение

Задача 53353

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3-
Классы: 8,9

Докажите равенство треугольников по стороне и высотам, опущенным на две другие стороны.

Прислать комментарий     Решение

Задача 53355

Темы:   [ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3-
Классы: 8,9

На диагонали AC квадрата ABCD взята точка M, причём  AM = AB.  Через точку M проведена прямая, перпендикулярная прямой AC и пересекающая BC в точке H. Докажите, что  BH = HM = MC.

Прислать комментарий     Решение

Задача 53375

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Дан треугольник ABC. На продолжении стороны AC за точку A отложен отрезок  AD = AB,  а за точку C – отрезок  CE = CB.
Найдите углы треугольника DBE, зная углы треугольника ABC.

Прислать комментарий     Решение

Задача 53377

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC медиана BD равна половине стороны AC. Найдите угол B треугольника.

Прислать комментарий     Решение

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .