Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.

Вниз   Решение


Треугольники ABC и A1B1C1 имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник A2B2C2, равный треугольнику A1B1C1 и такой, что прямые AA2, BB2 и CC2 будут параллельны?

ВверхВниз   Решение


Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что  PA = PD.

ВверхВниз   Решение


Автор: Фольклор

Пусть I – центр окружности, вписанной в треугольник ABC. Oкружность, описанная около треугольника BIC, пересекает прямые AB и AC в точках E и F соответственно. Докажите, что прямая EF касается окружности, вписанной в треугольник ABC.

ВверхВниз   Решение


Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.

ВверхВниз   Решение


На сторонах AP и PD остроугольного треугольника APD выбраны соответственно точки B и C. Диагонали четырёхугольника ABCD пересекаются в точке Q. Точки H1 и H2 являются ортоцентрами треугольников APD и BPC соответственно. Докажите, что если прямая H1H2 проходит через точку X пересечения описанных окружностей треугольников ABQ и CDQ, то она проходит и через точку Y пересечения описанных окружностей треугольников BQC и AQD.
(X ≠ Q,  Y ≠ Q.)

ВверхВниз   Решение


На хорде LM взята точка N, LN = 3, NM = 4, радиус окружности равен 5. Найдите максимальное из расстояний от точки N до точек окружности.

ВверхВниз   Решение


Автор: Исаев М.

Числа x1, x2, ..., xn таковы, что  x1x2 ≥ ... ≥ xn ≥ 0  и     Докажите, что  

ВверхВниз   Решение


Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны.
Верно ли, что оси симметрии графиков совпадают?

ВверхВниз   Решение


Точка O лежит на диагонали KM выпуклого четырёхугольника KLMN. Известно, что  OM = ON  и что точка O одинаково удалена от прямых NK, KL и LM. Найдите углы четырёхугольника, если  ∠LOM = 55°  и  ∠KON = 90°.

ВверхВниз   Решение


AD – биссектриса треугольника ABC. Точка M лежит на стороне AB, причём  AM = MD.  Докажите, что  MD || AC.

ВверхВниз   Решение


Докажите, что высота равнобедренного прямоугольного треугольника, проведённая из вершины прямого угла, вдвое меньше гипотенузы.

ВверхВниз   Решение


Докажите, что две прямые, параллельные третьей, параллельны между собой.

ВверхВниз   Решение


Через точку M, лежащую внутри угла с вершиной A, проведены прямые, параллельные сторонам угла и пересекающие эти стороны в точках B и C. Известно, что  ∠ACB = 50°,  а угол, смежный с углом ACM, равен 40°. Найдите углы треугольников BCM и ABC.

ВверхВниз   Решение


Внешние углы треугольника ABC при вершинах A и C равны 115° и 140°. Прямая, параллельная прямой AC пересекает стороны AB и AC в точках M и N.
Найдите углы треугольника BMN.

ВверхВниз   Решение


Точки M и N лежат на стороне AC треугольника ABC, причём  ∠ABM = ∠C  и  ∠CBN = ∠A.  Докажите, что треугольник BMN равнобедренный.

Вверх   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 7526]      



Задача 53429

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 2+
Классы: 8,9

AD – биссектриса треугольника ABC. Точка M лежит на стороне AB, причём  AM = MD.  Докажите, что  MD || AC.

Прислать комментарий     Решение

Задача 53430

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Равные треугольники. Признаки равенства ]
[ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Точки A и D лежат на одной из двух параллельных прямых, точки B и C – на другой, причём прямые AB и CD также параллельны.
Докажите, что  AB = CD  и  AD = BC.

Прислать комментарий     Решение

Задача 53434

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Докажите, что высота равнобедренного прямоугольного треугольника, проведённая из вершины прямого угла, вдвое меньше гипотенузы.

Прислать комментарий     Решение

Задача 53436

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Точки M и N лежат на стороне AC треугольника ABC, причём  ∠ABM = ∠C  и  ∠CBN = ∠A.  Докажите, что треугольник BMN равнобедренный.

Прислать комментарий     Решение

Задача 53438

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Прямая, проходящая через вершину A треугольника ABC, пересекает сторону BC в точке M. При этом  BM = AB,  ∠BAM = 35°,  ∠CAM = 15°.
Найдите углы треугольника ABC.

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .