Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Вниз   Решение


20 команд сыграли круговой турнир по волейболу.
Докажите, что команды можно занумеровать числами от 1 до 20 так, что 1-я команда выиграла у 2-й, 2-я – у 3-й, ..., 19-я – у 20-й.

ВверхВниз   Решение


Известно, что число 2333 имеет 101 цифру и начинается с цифры 1. Сколько чисел в ряду 2, 4, 8, 16, ..., 2333 начинается с цифры 4?

ВверхВниз   Решение


Автор: Белухов Н.

Даны два единичных куба с общим центром. Всегда ли можно занумеровать вершины каждого из кубов от $1$ до $8$ так, чтобы расстояние между любыми двумя вершинами с одинаковыми номерами не превышало $\frac{4}{5}$? А чтобы не превышало $\frac{13}{16}$?

ВверхВниз   Решение


а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
б) Какой максимальной длины кусок проволоки можно вырезать из этого каркаса? (Длина ребра куба равна 1 см.)

ВверхВниз   Решение


Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точках A и B, причем центр O окружности S1 лежит на S2. Прямая, проходящая через точку O, пересекает отрезок AB в точке P, а окружность S2 в точке C. Докажите, что точка P лежит на поляре точки C относительно окружности S1.

ВверхВниз   Решение


Точка K – середина стороны AB квадрата ABCD, а точка L делит диагональ AC в отношении  AL : LC = 3 : 1.  Докажите, что угол KLD прямой.

ВверхВниз   Решение


Найти все многочлены P(x), для которых справедливо тождество:  xP(x – 1) ≡ (x – 26)P(x).

ВверхВниз   Решение


Известно, что значения выражений b/a и b/c находятся в интервале  (–0,9, –0,8).  В каком интервале лежат значения выражения c/a?

ВверхВниз   Решение


Можно ли построить три дома, вырыть три колодца и соединить тропинками каждый дом с каждым колодцем так, чтобы тропинки не пересекались?

ВверхВниз   Решение


Можно ли разрезать квадрат 5×5 на прямоугольники двух видов: 1×4 и 1×3 так, чтобы получилось 7 прямоугольников?

ВверхВниз   Решение


а) Докажите, что середины четырех общих касательных к двум непересекающимся кругам лежат на одной прямой.
б) Через две из точек касания общих внешних касательных с двумя окружностями проведена прямая. Докажите, что окружности высекают на этой прямой равные хорды.

ВверхВниз   Решение


Докажите, что  x² + y² + z² ≥ xy + yz + zx  при любых x, y, z.

ВверхВниз   Решение


Докажите, что для плоского графа справедливо неравенство  2E ≥ 3F.

ВверхВниз   Решение


В строке записано несколько чисел. Каждую секунду робот выбирает какую-либо пару рядом стоящих чисел, в которой левое число больше правого, меняет их местами и при этом умножает оба числа на 2. Докажите, что через некоторое время сделать очередную такую операцию будет невозможно.

ВверхВниз   Решение


В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m?

ВверхВниз   Решение


В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь).

ВверхВниз   Решение


Постройте n-угольник, если известны n точек, являющихся вершинами равнобедренных треугольников, построенных на сторонах этого n-угольника и имеющих при вершинах углы $ \alpha_{1}^{}$,...,$ \alpha_{n}^{}$.

ВверхВниз   Решение


Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, разбивает треугольник на два подобных треугольника.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 7526]      



Задача 54205

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 2
Классы: 8,9

Катеты прямоугольного треугольника равны 12 и 16. Найдите высоту, проведённую из вершины прямого угла.

Прислать комментарий     Решение

Задача 54657

Темы:   [ Признаки подобия ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 2
Классы: 8,9

Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, разбивает треугольник на два подобных треугольника.

Прислать комментарий     Решение

Задача 54751

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Необычные построения (прочее) ]
Сложность: 2
Классы: 8,9

На линейке отмечены три деления: 0, 2 и 5. Как отложить с её помощью отрезок, равный 6?

Прислать комментарий     Решение

Задача 54774

Темы:   [ Необычные построения (прочее) ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2
Классы: 8,9

Имеется угольник с углом в 40°. Как с его помощью построить угол, равный:
 а) 80°;   б) 160°;   в) 20°?

Прислать комментарий     Решение

Задача 55146

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 2
Классы: 8,9

У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .