ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Медианы BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что  AMB1C1.  Докажите, что треугольник ABC равнобедренный.

   Решение

Задачи

Страница: << 162 163 164 165 166 167 168 >> [Всего задач: 6702]      



Задача 54658

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки разделите данный отрезок на n равных частей.

Прислать комментарий     Решение

Задача 54667

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Медианы BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что  AMB1C1.  Докажите, что треугольник ABC равнобедренный.

Прислать комментарий     Решение

Задача 54679

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

AA1, BB1 и CC1 – высоты треугольника ABC. Докажите, что

Прислать комментарий     Решение

Задача 54681

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки подобия ]
Сложность: 3
Классы: 8,9

Докажите, что произведения отрезков пересекающихся хорд окружности равны между собой.

Прислать комментарий     Решение

Задача 54716

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Точка M лежит на стороне AC равностороннего треугольника ABC со стороной 3a, причём  AM : MC = 1 : 2.  Точки K и L, расположенные на сторонах соответственно AB и BC являются вершинами другого равностороннего треугольника MKL. Найдите его стороны.

Прислать комментарий     Решение

Страница: << 162 163 164 165 166 167 168 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .