ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В деревне у прямой дороги стоят две избы A и B на расстоянии 50 метров друг от друга.
В какой точке дороги надо выкопать колодец, чтобы сумма расстояний от колодца до изб была бы наименьшей?

   Решение

Задачи

Страница: << 163 164 165 166 167 168 169 >> [Всего задач: 6702]      



Задача 54721

Темы:   [ Теорема синусов ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC, в котором  AC = BC = 1,  ∠B = 45°.  Найдите угол A.

Прислать комментарий     Решение

Задача 54736

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Необычные построения (прочее) ]
Сложность: 3
Классы: 8,9

На деревянной линейке отмечены три деления: 0, 7 и 11 сантиметров. Как отложить с её помощью отрезок, равный:  а) 8 см;  б) 5 см?

Прислать комментарий     Решение

Задача 54738

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 8,9

В деревне у прямой дороги стоят две избы A и B на расстоянии 50 метров друг от друга.
В какой точке дороги надо выкопать колодец, чтобы сумма расстояний от колодца до изб была бы наименьшей?

Прислать комментарий     Решение

Задача 54739

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 8,9

В деревне у прямой дороги с интервалами в 50 метров стоят три избы A, B и C.
В какой точке дороги надо выкопать колодец, чтобы сумма расстояний от колодца до изб была бы наименьшей?

Прислать комментарий     Решение

Задача 54741

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 8,9

В деревне A живет 100 школьников, в деревне B живет 50 школьников. Расстояние между деревнями 3 километра.
В какой точке дороги из A в B надо построить школу, чтобы суммарное расстояние, проходимое всеми школьниками, было бы как можно меньше?

Прислать комментарий     Решение

Страница: << 163 164 165 166 167 168 169 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .