ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На вешалке висят 20 платков. 17 девочек по очереди подходят к вешалке, и каждая либо снимает, либо вешает ровно один платок.
Может ли после ухода девочек на вешалке остаться 10 платков?

Вниз   Решение


Луч света, пущенный из точки M, зеркально отразившись от прямой AB в точке C, попал в точку N.
Докажите, что биссектриса угла MCN перпендикулярна прямой AB. (Угол падения равен углу отражения.)

Вверх   Решение

Задачи

Страница: << 135 136 137 138 139 140 141 >> [Всего задач: 7526]      



Задача 54734

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

На прямой выбраны три точки A, B и C, причём  AB = 3,  BC = 5.  Чему может быть равно AC?

Прислать комментарий     Решение

Задача 54735

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

На прямой выбраны четыре точки A, B, C и D, причём  AB = 1,  BC = 2,  CD = 4.  Чему может быть равно AD?

Прислать комментарий     Решение

Задача 54743

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

На прямой даны точки A, B и C. Известно, что  AB = 5,  а отрезок AC длиннее BC на 1. Найдите AC и BC.

Прислать комментарий     Решение

Задача 54760

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

Даны точки A и B. Где на прямой AB расположены точки, расстояние от которых до точки B больше, чем до точки A?

Прислать комментарий     Решение

Задача 54765

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Биссектриса угла ]
Сложность: 3-
Классы: 8,9

Луч света, пущенный из точки M, зеркально отразившись от прямой AB в точке C, попал в точку N.
Докажите, что биссектриса угла MCN перпендикулярна прямой AB. (Угол падения равен углу отражения.)

Прислать комментарий     Решение

Страница: << 135 136 137 138 139 140 141 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .