ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Найдутся ли такие три натуральных числа, что сумма каждых двух из них – степень тройки?

Вниз   Решение


Пусть  x = ab + bc + ca, x1 = mamb + mbmc + mcma. Докажите, что  9/20 < x1/x < 5/4.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 57414

Темы:   [ Неравенства с медианами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 5
Классы: 8,9,10

Докажите, что  | a2 - b2|/(2c) < mc $ \leq$ (a2 + b2)/(2c).
Прислать комментарий     Решение


Задача 57415

Тема:   [ Неравенства с медианами ]
Сложность: 6
Классы: 8,9

Пусть  x = ab + bc + ca, x1 = mamb + mbmc + mcma. Докажите, что  9/20 < x1/x < 5/4.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .