ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Из точки A, лежащей вне окружности, выходят лучи AB и AC, пересекающие эту окружность. Докажите, что величина угла BAC равна полуразности угловых величин дуг окружности, заключенных внутри этого угла. б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A. Докажите, что
a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 |
Страница: 1 2 >> [Всего задач: 7]
Докажите, что: б)
Докажите, что
a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2
Докажите, что
На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1, причем
AA1, BB1 и CC1 пересекаются в
одной точке. Докажите, что
SA1B1C1/SABC
На сторонах BC, CA и AB треугольника ABC взяты произвольные точки A1, B1 и C1. Пусть a = SAB1C1, b = SA1BC1, c = SA1B1C и u = SA1B1C1. Докажите, что
u3 + (a + b + c)u2
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке