Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

а) Из точки A, лежащей вне окружности, выходят лучи AB и AC, пересекающие эту окружность. Докажите, что величина угла BAC равна полуразности угловых величин дуг окружности, заключенных внутри этого угла.

б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A.

Вниз   Решение


Докажите, что  a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 $ \geq$ 4$ \sqrt{3}$S.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 57463

Темы:   [ Неравенства для площади треугольника ]
[ Формула Герона ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9

Докажите, что:
  а)  

  б)  
Прислать комментарий     Решение


Задача 57464

Тема:   [ Неравенства для площади треугольника ]
Сложность: 5
Классы: 9

Докажите, что  a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 $ \geq$ 4$ \sqrt{3}$S.
Прислать комментарий     Решение


Задача 57465

Тема:   [ Неравенства для площади треугольника ]
Сложность: 5
Классы: 9

Докажите, что
а)  S3 $ \leq$ ($ \sqrt{3}$/4)3(abc)2;
б)  3hahbhc $ \leq$ 43$ \sqrt{S}$ $ \leq$ 3rarbrc.
Прислать комментарий     Решение


Задача 57467

Тема:   [ Неравенства для площади треугольника ]
Сложность: 5
Классы: 9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AA1, BB1 и CC1 пересекаются в одной точке. Докажите, что  SA1B1C1/SABC $ \leq$ 1/4.
Прислать комментарий     Решение


Задача 57468

Тема:   [ Неравенства для площади треугольника ]
Сложность: 5
Классы: 9

На сторонах BC, CA и AB треугольника ABC взяты произвольные точки A1, B1 и C1. Пусть  a = SAB1C1, b = SA1BC1, c = SA1B1C и  u = SA1B1C1. Докажите, что

u3 + (a + b + c)u2 $\displaystyle \geq$ 4abc.


Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .