ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На каждой стороне квадрата взяли по одной точке. Оказалось, что эти точки являются вершинами прямоугольника, стороны которого параллельны диагоналям квадрата. Найдите периметр прямоугольника, если диагональ квадрата равна 6. Докажите, что при параллельном переносе окружность переходит в окружность.
|
Страница: 1 2 3 4 5 >> [Всего задач: 21]
Докажите, что при параллельном переносе окружность переходит в окружность.
Две окружности радиуса R касаются в точке K. На
одной из них взята точка A, на другой — точка B, причем
Две окружности радиуса R пересекаются в точках M и N.
Пусть A и B — точки пересечения серединного перпендикуляра
к отрезку MN с этими окружностями, лежащие по одну
сторону от прямой MN. Докажите, что
MN2 + AB2 = 4R2.
Внутри прямоугольника ABCD взята точка M. Докажите, что
существует выпуклый четырехугольник с перпендикулярными диагоналями
длины AB и BC, стороны которого равны AM, BM, CM, DM.
В каком месте следует построить мост MN через реку, разделяющую две данные деревни A и B, чтобы путь AMNB из деревни A в деревню B был кратчайшим (берега реки считаются параллельными прямыми, мост предполагается перпендикулярным к реке).
Страница: 1 2 3 4 5 >> [Всего задач: 21]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке