Страница:
<< 1 2
3 4 5 >> [Всего задач: 21]
Задача
57812
(#15.002)
|
|
Сложность: 3 Классы: 8,9
|
Дан треугольник
ABC. Точка
M, расположенная
внутри треугольника, движется параллельно стороне
BC до
пересечения со стороной
CA, затем параллельно
AB до
пересечения с
BC, затем параллельно
AC до пересечения
с
AB и т. д. Докажите, что через некоторое число шагов
траектория движения точки замкнется.
Задача
57813
(#15.003)
|
|
Сложность: 4 Классы: 8,9
|
Пусть
K,
L,
M и
N — середины сторон
AB,
BC,
CD
и
DA выпуклого четырехугольника
ABCD.
а) Докажите, что
KM(
BC +
AD)/2, причем равенство
достигается, только если
BC|
AD.
б) При фиксированных длинах сторон четырехугольника
ABCD
найдите максимальные значения длин отрезков
KM и
LN.
Задача
108637
(#15.003B)
|
|
Сложность: 3+ Классы: 8,9
|
Внутри параллелограмма ABCD выбрана точка O, причём ∠OAD = ∠OCD. Докажите, что ∠OBC =
∠ODC.
Задача
57815
(#15.004)
|
|
Сложность: 4 Классы: 8,9
|
В трапеции
ABCD стороны
BC и
AD параллельны,
M — точка пересечения биссектрис углов
A и
B,
N —
точка пересечения биссектрис углов
C и
D. Докажите, что
2
MN = |
AB +
CD -
BC -
AD|.
Задача
55523
(#15.005)
|
|
Сложность: 5- Классы: 8,9,10
|
Из вершины B параллелограмма ABCD проведены его высоты BK и
BH. Известны отрезки KH = a и BD = b. Найдите расстояние от точки
B до точки пересечения высот треугольника BKH.
Страница:
<< 1 2
3 4 5 >> [Всего задач: 21]