ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри выпуклого 2n-угольника взята точка P. Через каждую вершину и точку P проведена прямая. Докажите, что найдется сторона 2n-угольника, с которой ни одна из проведенных прямых не имеет общих внутренних точек.

   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 13]      



Задача 58090  (#21.011)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Выпуклые многоугольники ]
Сложность: 5
Классы: 8,9,10

Внутри выпуклого 2n-угольника взята точка P. Через каждую вершину и точку P проведена прямая. Докажите, что найдется сторона 2n-угольника, с которой ни одна из проведенных прямых не имеет общих внутренних точек.
Прислать комментарий     Решение


Задача 79287  (#21.012)

Темы:   [ Выпуклые многоугольники ]
[ Принцип крайнего ]
[ Задачи с ограничениями ]
Сложность: 3
Классы: 7,8,9

Доказать, что в произвольном выпуклом 2n-угольнике найдётся диагональ, не параллельная ни одной из его сторон.

Прислать комментарий     Решение

Задача 58092  (#21.013)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Геометрия на клетчатой бумаге ]
[ Раскраски ]
Сложность: 6
Классы: 8,9

Узлы бесконечной клетчатой бумаги раскрашены в три цвета. Докажите, что существует равнобедренный прямоугольный треугольник с вершинами одного цвета.
Прислать комментарий     Решение


Страница: << 1 2 3 [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .