Страница:
<< 1 2
3 >> [Всего задач: 13]
Задача
58085
(#21.006)
|
|
Сложность: 4+ Классы: 8,9,10
|
В квадрате со стороной 1 находится 51 точка.
Докажите, что какие-то три из них можно накрыть кругом
радиуса 1/7.
Задача
78570
(#21.007)
|
|
Сложность: 5- Классы: 8,9,10
|
Два неравных картонных диска разделены на 1965 равных секторов. На каждом из
дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший
диск наложен на больший, так что их центры совпадают, а секторы целиком лежат
один против другого. Меньший диск поворачивают на всевозможные углы, кратные
![$ {\frac{1}{1965}}$](show_document.php?id=1060663)
части окружности, оставляя больший диск неподвижным. Доказать,
что по крайней мере при 60 положениях на дисках совпадут не более 20
красных секторов.
Задача
58087
(#21.008)
|
|
Сложность: 5 Классы: 8,9,10
|
Каждая из девяти прямых разбивает квадрат на
два четырехугольника, площади которых относятся как 2 : 3.
Докажите, что по крайней мере три из этих девяти прямых
проходят через одну точку.
Задача
58088
(#21.009)
|
|
Сложность: 5 Классы: 7,8,9
|
В парке растет 10000 деревьев, посаженных квадратно-гнездовым
способом (100 рядов по 100 деревьев). Какое наибольшее число деревьев
можно срубить, чтобы выполнялось следующее условие: если встать на любой
пень, то не будет видно ни одного другого пня? (Деревья можно
считать достаточно тонкими.)
Задача
58089
(#21.010)
|
|
Сложность: 4 Классы: 7,8,9,10
|
Какое наименьшее число точек достаточно отметить
внутри выпуклого
n-угольника, чтобы внутри любого треугольника
с вершинами в вершинах
n-угольника содержалась
хотя бы одна отмеченная точка?
Страница:
<< 1 2
3 >> [Всего задач: 13]