ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Рассмотрим лист клетчатой бумаги со стороной клетки, равной 1. Пусть Pk – число всех непересекающихся ломаных длины k, начинающихся в точке O – некотором фиксированном узле сетки. Доказать, что  Pk·3k < 2  для любого k.

Вниз   Решение


Докажите, что плоскость можно разбить на отрезки.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 58263  (#25.041)

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 2+
Классы: 8,9

Докажите, что четырехугольник (с границей и внутренностью) можно разбить на отрезки, т. е. представить в виде объединения непересекающихся отрезков.
Прислать комментарий     Решение


Задача 58264  (#25.042)

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 4+
Классы: 8,9

Докажите, что треугольник можно разбить на отрезки.
Прислать комментарий     Решение


Задача 58265  (#25.043)

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 5
Классы: 8,9

Докажите, что круг можно разбить на отрезки.
Прислать комментарий     Решение


Задача 58266  (#25.044)

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 5
Классы: 8,9

Докажите, что плоскость можно разбить на отрезки.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .