ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли нарисовать на плоскости шесть точек и так соединить их непересекающимися отрезками, что каждая точка будет соединена ровно с четырьмя другими?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 58291

Тема:   [ Системы отрезков, прямых и окружностей ]
Сложность: 3
Классы: 7,8,9

Постройте замкнутую шестизвенную ломаную, пересекающую каждое свое звено ровно один раз.
Прислать комментарий     Решение


Задача 58292

Тема:   [ Системы отрезков, прямых и окружностей ]
Сложность: 3
Классы: 7,8,9

Можно ли нарисовать на плоскости шесть точек и так соединить их непересекающимися отрезками, что каждая точка будет соединена ровно с четырьмя другими?
Прислать комментарий     Решение


Задача 58293

Тема:   [ Системы отрезков, прямых и окружностей ]
Сложность: 5
Классы: 7,8,9

Точка O, лежащая внутри выпуклого многоугольника A1...An, обладает тем свойством, что любая прямая OAi содержит еще одну вершину Aj. Докажите, что кроме точки O никакая другая точка не обладает этим свойством.
Прислать комментарий     Решение


Задача 58294

Тема:   [ Системы отрезков, прямых и окружностей ]
Сложность: 5+
Классы: 7,8,9

На окружности отметили 4n точек и окрасили их через одну в красный и синий цвета. Точки каждого цвета разбили на пары, а точки каждой пары соединили отрезками того же цвета. Докажите, что если никакие три отрезка не пересекаются в одной точке, то найдется по крайней мере n точек пересечения красных отрезков с синими.
Прислать комментарий     Решение


Задача 58295

Тема:   [ Системы отрезков, прямых и окружностей ]
Сложность: 5+
Классы: 7,8,9

На плоскости расположено n$ \ge$5 окружностей так, что любые три из них имеют общую точку. Докажите, что тогда и все окружности имеют общую точку.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .