ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Через точку A проведена прямая l, пересекающая
окружность S с центром O в точках M и N и не проходящая
через O. Пусть M' и N' — точки, симметричные M и N
относительно OA, а A' — точка пересечения прямых MN' и M'N.
Докажите, что A' совпадает с образом точки A при инверсии
относительно S (и, следовательно, не зависит от выбора
прямой l).
|
Страница: << 1 2 [Всего задач: 8]
Докажите, что две непересекающиеся окружности S1 и S2
(или окружность и прямую) можно при помощи
инверсии перевести в пару концентрических окружностей.
Через точку A проведена прямая l, пересекающая
окружность S с центром O в точках M и N и не проходящая
через O. Пусть M' и N' — точки, симметричные M и N
относительно OA, а A' — точка пересечения прямых MN' и M'N.
Докажите, что A' совпадает с образом точки A при инверсии
относительно S (и, следовательно, не зависит от выбора
прямой l).
Докажите, что при инверсии относительно описанной окружности изодинамические
центры треугольника переходят друг в друга.
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке