ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Пусть точки A, B, C, D, E и F лежат на одной конике. Докажите,
что тогда прямые Паскаля шестиугольников ABCDEF, ADEBCF и ADCFEB
пересекаются в одной точке (Штейнер).
Докажите, что abc = 4prR и
ab + bc + ca = r2 + p2 + 4rR.
Внутри выпуклого четырехугольника ABCD построены равнобедренные
прямоугольные треугольники ABO1, BCO2, CDO3
и DAO4. Докажите, что если O1 = O3, то O2 = O4.
Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.
Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.
Плоскость раскрашена в семь цветов. Обязательно
ли найдутся две точки одного цвета, расстояние между
которыми равно 1?
Докажите, что для любого n существует окружность, внутри которой
лежит ровно n целочисленных точек.
Докажите, что площадь выпуклого четырехугольника равна $\frac12 d_1 d_2\sin\varphi$, где $d_1$ и $d_2$ — длины диагоналей, а $\varphi$ — угол между ними. На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2.
Докажите, что если окружности, описанные около треугольников A1B1C1,
A1B2C2, A2B1C2, A2B2C1,
проходят через одну точку, то и окружности, описанные около треугольников
A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через
одну точку.
|
Страница: 1 2 >> [Всего задач: 7]
Даны четыре окружности, причем окружности S1
и S3 пересекаются с обеими окружностями S2 и S4. Докажите,
что если точки пересечения S1 с S2 и S3 с S4 лежат на одной
окружности или прямой, то и точки пересечения S1 с S4 и S2
с S3 лежат на одной окружности или прямой (рис.).
Даны четыре окружности S1, S2, S3, S4. Пусть S1
и S2 пересекаются в точках A1 и A2, S2 и S3 —
в точках B1 и B2, S3 и S4 — в точках C1 и C2,
S4 и S1 — в точках D1 и D2 (рис.). Докажите, что
если точки A1, B1, C1, D1 лежат на одной окружности S
(или прямой), то и точки A2, B2, C2, D2
лежат на одной окружности (или прямой).
Стороны выпуклого пятиугольника ABCDE продолжили так,
что образовалась пятиконечная звезда
AHBKCLDMEN (рис.).
Около треугольников — лучей звезды описали окружности. Докажите,
что пять точек пересечения этих окружностей, отличных от A, B, C,
D, E, лежат на одной окружности.
На плоскости взяты шесть точек A1, A2, A3, B1, B2, B3.
Докажите, что если описанные окружности треугольников
A1A2B3,
A1B2A3 и B1A2A3 проходят через одну точку, то и описанные
окружности треугольников B1B2A3, B1A2B3 и A1B2B3
пересекаются в одной точке.
На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2.
Докажите, что если окружности, описанные около треугольников A1B1C1,
A1B2C2, A2B1C2, A2B2C1,
проходят через одну точку, то и окружности, описанные около треугольников
A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через
одну точку.
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке