ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Числа a0, a1,..., an,... определены следующим образом:

a0 = 2,    a1 = 3,        an + 1 = 3an - 2an - 1        (n $\displaystyle \geqslant$ 2).

Найдите и докажите формулу для этих чисел.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 60286  (#01.013)

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9,10

Докажите тождество: $ {\dfrac{1^2}{1\cdot3}}$ + $ {\dfrac{2^2}{3\cdot5}}$ +...+ $ {\dfrac{n^2}{(2n-1)(2n+1)}}$ = $ {\dfrac{n(n+1)}{2(2n+1)}}$.

Прислать комментарий     Решение

Задача 102829  (#01.014)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 7,8

Найдите сумму   1·1! + 2·2! + 3·3! + … + n·n!.

Прислать комментарий     Решение

Задача 60288  (#01.015)

Тема:   [ Системы счисления (прочее) ]
Сложность: 3-
Классы: 8,9,10

Факториальная система счисления. Докажите, что каждое натуральное число n может быть единственным образом представлено в виде

n = a1 . 1! + a2 . 2! + a3 . 3! +...,

где 0 $ \leqslant$ a1 $ \leqslant$ 1, 0 $ \leqslant$ a2 $ \leqslant$ 2, 0 $ \leqslant$ a3 $ \leqslant$ 3...

Прислать комментарий     Решение

Задача 60289  (#01.016)

Тема:   [ Рекуррентные соотношения ]
Сложность: 3
Классы: 8,9,10

Числа a0, a1,..., an,... определены следующим образом:

a0 = 2,    a1 = 3,        an + 1 = 3an - 2an - 1        (n $\displaystyle \geqslant$ 2).

Найдите и докажите формулу для этих чисел.

Прислать комментарий     Решение

Задача 60290  (#01.017)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 9,10

Докажите, что для любого натурального n  10n + 18n – 1  делится на 27.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .