ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Через точку на плоскости провели 10 прямых, после чего плоскость разрезали по этим прямым на углы.
Докажите, что хотя бы один из этих углов меньше 20°.

Вниз   Решение


На сколько градусов поворачивается за минуту минутная стрелка? Часовая стрелка?

ВверхВниз   Решение


На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn соответственно и проведены все отрезки вида AiBj
(1 ≤ im,  1 ≤ jn).  Сколько будет точек пересечения, если известно, что никакие три из этих отрезков в одной точке не пересекаются?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



Задача 60380  (#02.046)

Тема:   [ Классическая комбинаторика (прочее) ]
Сложность: 3-
Классы: 8,9

Из двух математиков и десяти экономистов надо составить комиссию из восьми человек.
Сколькими способами можно составить комиссию, если в неё должен входить хотя бы один математик?

Прислать комментарий     Решение

Задача 60381  (#02.047)

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
Сложность: 2
Классы: 7,8

На плоскости дано n точек. Сколько имеется отрезков с концами в этих точках?

Прислать комментарий     Решение

Задача 60382  (#02.048)

Темы:   [ Сочетания и размещения ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 2+
Классы: 8,9

На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников?

Прислать комментарий     Решение

Задача 60383  (#02.049)

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
Сложность: 3-
Классы: 8,9

На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn соответственно и проведены все отрезки вида AiBj
(1 ≤ im,  1 ≤ jn).  Сколько будет точек пересечения, если известно, что никакие три из этих отрезков в одной точке не пересекаются?

Прислать комментарий     Решение

Задача 60384  (#02.050)

 [Ключи от сейфа]
Темы:   [ Сочетания и размещения ]
[ Криптография ]
Сложность: 3+
Классы: 8,9

Международная комиссия состоит из девяти человек. Материалы комиссии хранятся в сейфе. Сколько замков должен иметь сейф, сколько ключей для них нужно изготовить и как их разделить между членами комиссии, чтобы доступ к сейфу был возможен тогда и только тогда, когда соберутся не менее шести членов комиссии?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .