ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Число n! разложено в произведение простых чисел:     Докажите равенство  

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 60549  (#03.097)

Темы:   [ Количество и сумма делителей числа ]
[ Ряды (прочее) ]
Сложность: 5-
Классы: 11

Может ли быть так, что   а)  σ(n) > 3n;   б)  σ(n) > 100n?

Прислать комментарий     Решение

Задача 60550  (#03.098)

 [Задача Ферма]
Тема:   [ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 8,9,10

Найдите наименьшее число вида  n = 2αpq,  где p и q – некоторые нечётные простые числа, для которого  σ(n) = 3n.

Прислать комментарий     Решение

Задача 60551  (#03.099)

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2+
Классы: 6,7,8,9

Пусть α – действительное положительное число, d – натуральное.
Докажите, что количество натуральных чисел, не превосходящих α и делящихся на d, равно  [α/d].

Прислать комментарий     Решение

Задача 60552  (#03.100)

Темы:   [ Делимость чисел. Общие свойства ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2+
Классы: 7,8,9

Докажите, что для действительного положительного α и натурального d всегда выполнено равенство  [α/d] = [[α]/d].

Прислать комментарий     Решение

Задача 60553  (#03.101)

 [Формула Лежандра]
Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4-
Классы: 8,9,10

Число n! разложено в произведение простых чисел:     Докажите равенство  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .