|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Для игры «Отравленный пирог» используется прямоугольный пирог, разделенный на M «строк» горизонтальными разрезами и на N «столбцов» – вертикальными. Таким образом, пирог должен быть разбит на M × N клеток, правая нижняя из которых «отравлена». Играют двое игроков, ходы делаются по очереди. Каждый ход заключается в том, что игрок выбирает одну из еще не съеденных клеток пирога и съедает все клетки, расположенные левее и выше выбранной (в том числе и выбранную). Проигрывает тот, кто съедает отравленную клетку. Требуется написать программу, которая по заданной игровой позиции
определяет все возможные выигрышные ходы для начинающего в этой позиции. Каждый ход задается парой чисел (i, j), где i – номер (снизу) горизонтального
ряда, а j – номер (справа) вертикального ряда, которому принадлежит
выбранная клетка (1 ≤ i ≤ M, 1 ≤ j ≤ N).
На доске написано 10 плюсов и 15 минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется на доске после выполнения 24 таких операций? |
Страница: 1 2 3 4 5 >> [Всего задач: 21]
Пусть m и n – целые числа. Докажите, что mn(m + n) – чётное число.
Каждый из людей, когда-либо живших на земле, сделал определённое число рукопожатий.
В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
На доске написано 10 плюсов и 15 минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется на доске после выполнения 24 таких операций?
Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?
Страница: 1 2 3 4 5 >> [Всего задач: 21] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|