ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что в трёхзначном числе, кратном 37, всегда можно переставить цифры так, что новое число также будет кратно 37. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]
Число x таково, что x² заканчивается на 001 (в десятичной системе счисления).
Имеется много одинаковых квадратов. В вершинах каждого из них в произвольном порядке написаны числа 1, 2, 3 и 4. Квадраты сложили в стопку и написали сумму чисел, попавших в каждый из четырёх углов стопки. Может ли оказаться
так, что
Дан многочлен с целыми коэффициентами. Если в него вместо неизвестного подставить 2 или 3, то получаются числа, кратные 6.
Докажите, что в трёхзначном числе, кратном 37, всегда можно переставить цифры так, что новое число также будет кратно 37.
Докажите, что если p – простое число и 1 ≤ k ≤ p – 1, то
Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке