ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Число N записано в десятичной системе счисления  N = .  Докажите следующие признаки делимости:
  а) N делится на 3  ⇔  an + an–1 + ... + a1 + a0 делится на 3;
  б) N делится на 9  ⇔  an + an–1 + ... + a1 + a0 делится на 9;
  в) N делится на 11  ⇔  (–1)nan + (–1)n–1an–1 + ... + a1 + a0 делится на 11.

   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 60789  (#04.163)

 [Признаки делимости на 3, 9 и 11]
Тема:   [ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Число N записано в десятичной системе счисления  N = .  Докажите следующие признаки делимости:
  а) N делится на 3  ⇔  an + an–1 + ... + a1 + a0 делится на 3;
  б) N делится на 9  ⇔  an + an–1 + ... + a1 + a0 делится на 9;
  в) N делится на 11  ⇔  (–1)nan + (–1)n–1an–1 + ... + a1 + a0 делится на 11.

Прислать комментарий     Решение

Задача 60791  (#04.165)

 [Признаки делимости на 2.4, 8, 5 и 25]
Тема:   [ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Сформулируйте и докажите признаки делимости на числа 2, 4, 8, 5 и 25.

Прислать комментарий     Решение

Задача 60792  (#04.166)

Темы:   [ Признаки делимости (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Найдите все числа вида  xy9z,  которые делятся на 132.

Прислать комментарий     Решение

Задача 60793  (#04.167)

Темы:   [ Признаки делимости (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

Найдите все числа вида 13xy45z,  которые делятяс на 792.

Прислать комментарий     Решение

Задача 60794  (#04.168)

 [Цифровой корень числа]
Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8,9

Рассмотрим число N, записанное в десятичной системе счисления. Найдём сумму цифр этого числа, потом сложим цифры, которыми записана сумма и т.д. Будем продолжать этот процесс, пока в конце концов не получим однозначное число, которое называют цифровым корнем числа N. Докажите, что цифровой корень сравним с N по модулю 9.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .