ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Мальчик едет на самокате от одной автобусной остановки до другой и смотрит в зеркало, не появился ли сзади автобус. Как только мальчик замечает автобус, он может изменить направление движения. При каком наибольшем расстоянии между остановками мальчик гарантированно не упустит автобус, если он знает, что едет со скоростью, втрое меньшей скорости автобуса, и способен увидеть автобус на расстоянии не более 2 км?

Вниз   Решение


Из 101 далматинца у 29 пятно только на левом ухе, у 17 – только на правом ухе, а у 22 далматинцев нет пятен на ушах.
Сколько далматинцев имеют пятно на правом ухе?

ВверхВниз   Решение


Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.

ВверхВниз   Решение


У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета "1 рубль". Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета "2 рубля". Петя вытащил из кармана 5 монет. Назовите эти монеты.

ВверхВниз   Решение


Автор: Фольклор

Существуют ли 2016 целых чисел, сумма и произведение которых равны 2016?

ВверхВниз   Решение


Турнир Городов проводится раз в год. Сейчас год проведения осеннего тура делится на номер турнира:  2021:43 = 47.  Сколько ещё раз человечество сможет наблюдать это удивительное явление?

ВверхВниз   Решение


Докажите, что если  (m, 10) = 1,  то у десятичного представления дроби 1/m нет предпериода.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 18]      



Задача 60876  (#05.038)

Темы:   [ Периодические и непериодические дроби ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 8,9,10

Докажите, что равенство   =   равносильно тому, что десятичное представление дроби 1/m имеет вид  0,(a1a2...an).

Прислать комментарий     Решение

Задача 60877  (#05.039)

Темы:   [ Теорема Эйлера ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (m, 10) = 1,  то существует репьюнит En, делящийся на m. Будет ли их бесконечно много?

Прислать комментарий     Решение

Задача 60878  (#05.040)

Тема:   [ Десятичные дроби ]
Сложность: 3
Классы: 7,8,9

Как связаны между собой десятичные представления чисел    и   ?

Прислать комментарий     Решение

Задача 60879  (#05.041)

Темы:   [ Периодические и непериодические дроби ]
[ Функция Эйлера ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (m, 10) = 1,  то у десятичного представления дроби 1/m нет предпериода.

Прислать комментарий     Решение

Задача 60880  (#05.042)

Тема:   [ Периодические и непериодические дроби ]
Сложность: 3
Классы: 8,9,10

Найдите возможные значения знаменателя обычной дроби вида 1/m, которая представляется чисто периодической десятичной дробью с двумя цифрами в периоде.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .