ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Применим метод Ньютона (см. задачу 61328) для
приближённого нахождения корней многочлена f(x) = x² – x – 1. Какие последовательности чисел получатся, если Пусть a и b – два положительных числа, причём a < b. Построим по этим числам две последовательности {an} и {bn} по правилам: a0 = a, b0 = b, an+1 =
Докажите, что обе эти последовательности имеют один и тот же предел. Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается μ(a, b).
Исследуйте последовательности на сходимость:
Решить в простых числах уравнение pqr = 7(p + q + r).
Марсианские
амебы II. При помощи ним-сумм (смотри задачу 5.76) можно исследовать самые разные
игры и процессы. Например, можно получить еще одно решение
задачи 4.20.
f (A)
Какие рассуждения остается провести, чтобы решить задачу про амеб?
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
Ним-сумма. Будем
говорить, что число n является ним-суммой чисел m и k
(
m
m = (ms...m1m0)2, k = (ks...k1k0)2
(меньшее
число дополняется спереди нулями).
2) Полученные наборы цифр как векторы складываются покомпонентно по модулю 2:
(ms,..., m1, m0) + (ks,..., k1, k0)
3) Набор цифр
(ns,..., n1, n0) переводится в число n:
(ns...n1n0)2 = n.
Например, 4
4 = (100)2, 7 = (111)2, (1, 0, 0) + (1, 1, 1)
Докажите, что ним-сумма удовлетворяет следующим свойствам:
а) m г) если n то найдется такой номер j ( 1
Игра ``Ним''. Имеется несколько кучек камней. Двое по очереди берут из
них камни. За один ход разрешается взять любое (ненулевое)
количество камней, но только из одной кучки. Выигрывает тот, кто
взял последний камень.
Для анализа игры каждому набору кучек камней m1, m2, ...,
ml поставим в соответствие его ним сумму (5.1
).
Марсианские
амебы II. При помощи ним-сумм (смотри задачу 5.76) можно исследовать самые разные
игры и процессы. Например, можно получить еще одно решение
задачи 4.20.
f (A)
Какие рассуждения остается провести, чтобы решить задачу про амеб?
Проанализируйте при помощи ним-сумм игру
``Йога''
из
задачи 4.21.
Игра ``Шоколадка''. Имеется шоколадка, состоящая из 6×8 = 48 долек. Одна из долек отмечена: а) Опишите выигрышную стратегию в этой игре. Кто из игроков выиграет при данных начальных условиях? б) При каких размерах шоколадки начинающий игрок выигрывает при любом расположении отмеченной дольки? в) При каких размерах шоколадки начинающий игрок проигрывает при любом расположении отмеченной дольки?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке