Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Последовательность чисел {an} задана условиями

a1 = 1,        an + 1 = an + $\displaystyle {\dfrac{1}{a_n^2}}$    (n $\displaystyle \geqslant$ 1).

Верно ли, что эта последовательность ограничена?

Вниз   Решение


Карточный фокус. а) Берется колода из 27 карт (без одной масти). Ваш друг загадывает одну из карт. После чего вы раскладываете все карты в три равные кучки, кладя каждый раз по одной карте (в первую кучку, затем во вторую, затем в третью, потом снова в первую и т. д.). Ваш друг указывает на ту кучку, в которой лежит его карта. Далее вы складываете все три кучки вместе, вставляя при этом указанную кучку между двумя другими. Эта процедура повторяется еще два раза. На каком месте в колоде окажется загаданная карта, после того, как вы сложите вместе три кучки в третий раз?
б) На каком месте окажется загаданная карта, если с самого начала было 3n (n < 9) карт?

ВверхВниз   Решение


Каждое из рёбер полного графа с 18 вершинами покрашено в один из двух цветов.
Докажите, что есть четыре вершины, все рёбра между которыми – одного цвета.

ВверхВниз   Решение


Для последовательности {an}

$\displaystyle \lim\limits_{n\to\infty}^{}$$\displaystyle \left(\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right.$an + 1 - $\displaystyle {\dfrac{a_n}{2}}$$\displaystyle \left.\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right)$ = 0.

Докажите, что $ \lim\limits_{n\to\infty}^{}$an = 0.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 61306  (#09.055)

Темы:   [ Ограниченность, монотонность ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3
Классы: 8,9,10

Последовательность чисел {an} задана условиями

a1 = 1,        an + 1 = an + $\displaystyle {\dfrac{1}{a_n^2}}$    (n $\displaystyle \geqslant$ 1).

Верно ли, что эта последовательность ограничена?

Прислать комментарий     Решение

Задача 61307  (#09.056)

Тема:   [ Предел последовательности, сходимость ]
Сложность: 4
Классы: 10,11

Для последовательности {an}

$\displaystyle \lim\limits_{n\to\infty}^{}$$\displaystyle \left(\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right.$an + 1 - $\displaystyle {\dfrac{a_n}{2}}$$\displaystyle \left.\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right)$ = 0.

Докажите, что $ \lim\limits_{n\to\infty}^{}$an = 0.

Прислать комментарий     Решение

Задача 61308  (#09.057)

Тема:   [ Предел последовательности, сходимость ]
Сложность: 3+
Классы: 10,11

Числа a1, a2, ..., ak таковы, что равенство

$\displaystyle \lim\limits_{n\to\infty}^{}$(xn + a1xn - 1 +...+ akxn - k) = 0

возможно только для тех последовательностей {xn}, для которых $ \lim\limits_{n\to\infty}^{}$xn = 0. Докажите, что все корни многочлена

P($\displaystyle \lambda$) = $\displaystyle \lambda^{k}_{}$ + a1$\displaystyle \lambda^{k-1}_{}$ + a2$\displaystyle \lambda^{k-2}_{}$ +...+ ak

по модулю меньше 1.

Прислать комментарий     Решение

Задача 61309  (#09.058)

Темы:   [ Предел последовательности, сходимость ]
[ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
Сложность: 4-
Классы: 10,11

Исследуйте последовательности на сходимость:
а) xn + 1 = $ {\dfrac{1}{1+x_n}}$,    x0 = 1;
б) xn + 1 = sin xn,     x0 = a $ \in$ (0;$ \pi$);
в) xn + 1 = $ \sqrt{a+x}$,    a > 0, x0 = 0.

Прислать комментарий     Решение

Задача 61310  (#09.059)

Темы:   [ Итерации ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 10,11

Что останется от прямоугольника? Золотой прямоугольник — это такой прямоугольник, стороны a и b которого находятся в пропорции золотого сечения, то есть удовлетворяют равенству a : b = b : (a - b). Представим, что такой прямоугольник вырезан из бумаги и лежит на столе, обращенный к нам своей более длинной стороной. Отсечем по левую сторону прямоугольника наибольший квадрат, который можно из него вырезать; остаток будет снова золотым прямоугольником. Далее становимся по левую сторону стола так, чтобы снова иметь перед собой более длинную сторону и поступаем с новым прямоугольником так же, как и с предыдущим. Таким образом обходим стол вокруг по направлению хода часовой стрелки и по очереди отсекаем квадраты. Каждая точка прямоугольника за исключением одной, будет раньше или позже отсечена. Определите положение этой исключительной точки.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .