ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны натуральное число n > 3 и положительные числа x1, x2, ..., xn, произведение которых равно 1. Шесть математиков пошли на рыбалку. Вместе они наловили 100 рыб, причём все поймали разное количество. После рыбалки они заметили, что любой из них мог бы раздать всех своих рыб другим рыбакам так, чтобы у остальных пятерых стало поровну рыб. Докажите, что один рыбак может уйти домой со своим уловом и при этом снова каждый оставшийся сможет раздать всех своих рыб другим рыбакам так, чтобы у них получилось поровну. Во всех клетках таблицы 100×100 стоят плюсы. Разрешается одновременно менять знаки во всех клетках одной строки или же во всех клетках одного столбца. Можно ли, пользуясь только этими операциями, получить ровно 1970 минусов? Докажите неравенство для положительных значений переменных: (a + b + c + d)² ≤ 4(a² + b² + c² + d²). |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 76]
Докажите, что x + 1/x ≥ 2 при x > 0.
Докажите, что
Докажите неравенство для положительных значений переменных: (a + b + c + d)² ≤ 4(a² + b² + c² + d²).
Докажите неравенство для положительных значений переменных:
Докажите неравенство
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 76]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке