ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 61416  (#10.065)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Симметрические многочлены ]
Сложность: 4-
Классы: 9,10,11

Докажите неравенства:
  а)  x4 + y4 + z4x²yz + xy²z + xyz²;
  б)  x³ + y³ + z³ ≥ 3xyz;
  в)  x4 + y4 + z4 + t4 ≥ 4xyzt;
  г)   x5 + y5x³y² + x²y³.
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 61417  (#10.066)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Симметрические многочлены ]
Сложность: 3-
Классы: 10,11

  Определение. Пусть  α = (k, j, i)  – набор целых неотрицательных чисел,  k ≥ j ≥ i.  Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам  (a, b, c)  набора  (k, j, i).
  Аналогично определяются многочлены Tα для произвольного количества переменных/чисел в наборе α.
  Запишите через многочлены вида Tα неравенства
  а)  x4y + y4x ≥ x³y² + x²y³;
  б)  x³yz + y³xz + z³xy ≥ x²y²z + y²z²x + z²x²y.

Прислать комментарий     Решение

Задача 61418  (#10.067)

Тема:   [ Симметрические многочлены ]
Сложность: 3-
Классы: 9,10,11

Напишите многочлены Tα и нарисуйте соответствующие им диаграммы Юнга для следующих наборов α
  а)  (3, 2);    б)  (3, 2, 1);    в)  (3, 3, 0, 0);    г)  (4, 1, 1, 0).
Определение многочленов Tα смотри в задаче 61417, определение диаграмм Юнга в справочнике.

Прислать комментарий     Решение

Задача 61419  (#10.068)

Темы:   [ Раскладки и разбиения ]
[ Перебор случаев ]
Сложность: 2
Классы: 8,9,10

Найдите число всех диаграмм Юнга с весом s, если
а)  s = 4;   б)  s = 5;   в)  s = 6;   г)  s = 7.
Определение диаграмм Юнга смотри в справочнике.

Прислать комментарий     Решение

Задача 61420  (#10.069)

Темы:   [ Раскладки и разбиения ]
[ Отношение порядка ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что     тогда и только тогда, когда β можно получить из α проделав несколько (может быть один раз или ни одного) операции вида

(k,  j, i)   ↔   (k – 1,  j + 1, i),     (k,  j, i)   ↔   (k – 1, j, i + 1),     (k, j, i)   ↔ (k,  j – 1, i + 1).

(Эти операции можно представлять себе как сбрасывание одного кирпича вниз на диаграмме Юнга. Про диаграммы Юнга смотри здесь.)

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .