Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Луч света, пущенный из точки M, зеркально отразившись от прямой AB в точке C, попал в точку N.
Докажите, что биссектриса угла MCN перпендикулярна прямой AB. (Угол падения равен углу отражения.)

Вниз   Решение


Два рыбака поймали 80 рыб, причём 5/9 улова первого составляли караси, а 7/11 улова второго – окуни. Сколько рыб поймал каждый из них?

ВверхВниз   Решение


Клетки доски 7×7 окрашены в шахматном порядке так, что углы окрашены в чёрный цвет. Разрешается перекрашивать в противоположный цвет любые две соседние клетки. Можно ли с помощью таких операций перекрасить всю доску в белый цвет?

ВверхВниз   Решение


Сколько целых чисел от 1 до 2001 имеют сумму цифр, делящуюся на 5?

ВверхВниз   Решение


На столе стоят семь стаканов – все вверх дном. За один ход можно перевернуть любые четыре стакана.
Можно ли за несколько ходов добиться того, чтобы все стаканы стояли правильно?

ВверхВниз   Решение


Через точку, не лежащую на данной прямой, проведите с помощью циркуля и линейки прямую, параллельную данной.

ВверхВниз   Решение


Докажите признак равенства прямоугольных треугольников по катету и противолежащему углу.

ВверхВниз   Решение


Окружность касается большего катета прямоугольного треугольника, проходит через вершину противолежащего острого угла и имеет центр на гипотенузе треугольника. Найдите радиус окружности, если катеты равны 5 и 12.

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:
+ .

Вверх   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 4556]      



Задача 61228

Тема:   [ Обратные тригонометрические функции ]
Сложность: 2
Классы: 9,10

Докажите формулы:

arcsin(- x) = - arcsin x,    arccos(- x) = $\displaystyle \pi$ - arccos x.


Прислать комментарий     Решение

Задача 61353

 [Неравенство между средним квадратичным и средним арифметическим]
Тема:   [ Классические неравенства (прочее) ]
Сложность: 2
Классы: 8,9,10

Докажите, что   .

Прислать комментарий     Решение

Задача 61354

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Неравенство Коши ]
Сложность: 2
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:   (a + b + c + d)² ≤ 4(a² + b² + c² + d²).

Прислать комментарий     Решение

Задача 61355

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Неравенство Коши ]
Сложность: 2
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:
+ .

Прислать комментарий     Решение

Задача 61359

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Неравенство Коши ]
Сложность: 2
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:   x² + y² + 1 ≥ xy + x + y.

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 4556]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .