ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите сумму Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x). |
Страница: 1 2 >> [Всего задач: 8]
Вычислите функции gk,l(x) при 0 ≤ k + l ≤ 4 и покажите, что все они являются многочленами.
Докажите следующие свойства функций gk,l(x)
(определения функций gk,l(x)
смотри здесь):
а) Определение (смотри в справочнике) функций gk,l(x) не позволяет вычислять их значения при x = 1. Но, поскольку функции gk,l(x) являются многочленами, они определены и при x = 1. Докажите равенство б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение x = 1?
Найдите сумму Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x).
Обозначим через Pk,l(n) количество разбиений числа n на не более чем k слагаемых, каждое из которых не превосходит l.
Страница: 1 2 >> [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|