ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что при любых k и l многочлен gk,l(x) является возвратным, то есть  
(Определение многочленов Гаусса см. здесь.)

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 61526  (#11.099)

Темы:   [ Раскладки и разбиения ]
[ Многочлены Гаусса ]
[ Производящие функции ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 10,11

  Пусть fk,l(x) – производящая функция последовательности Pk,l(n) из задачи 61525:   fk,l(x) = Pk,l(0) + xPk,l(1) + ... + xklPk,l(kl).

  а) Докажите равенства:  fk,l(x) = fk–1,l(x) + xkfk,l–1(x) = fk,l–1(x) + xlfk–1,l(x).

  б) Докажите, что функции fk,l(x) совпадают с многочленами Гаусса gk,l(x) (определение многочленов Гаусса смотри здесь).

Прислать комментарий     Решение

Задача 61527  (#11.100)

Темы:   [ Многочлены Гаусса ]
[ Раскладки и разбиения ]
Сложность: 4+
Классы: 10,11

Докажите, что при любых k и l многочлен gk,l(x) является возвратным, то есть  
(Определение многочленов Гаусса см. здесь.)

Прислать комментарий     Решение

Задача 61528  (#11.101)

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 8,9,10,11

Докажите, что  
Числа Pkl(n) определены в задаче 61525.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .