ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вписанный n-угольник  (n > 3)  разбит непересекающимися (во внутренних точках) диагоналями на треугольники. Каждый из получившихся треугольников подобен хотя бы одному из остальных. При каких n возможна описанная ситуация?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 64903  (#1)

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3
Классы: 8,9

Автор: Рожкова М.

В треугольнике ABC точка M – середина AB, а точка D – основание высоты CD. Докажите, что  ∠A = 2∠B  тогда и только тогда, когда  AC = 2MD.

Прислать комментарий     Решение

Задача 64904  (#2)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Вписанный n-угольник  (n > 3)  разбит непересекающимися (во внутренних точках) диагоналями на треугольники. Каждый из получившихся треугольников подобен хотя бы одному из остальных. При каких n возможна описанная ситуация?

Прислать комментарий     Решение

Задача 64905  (#3)

Темы:   [ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Окружность с центром I касается сторон AB, BC, CA треугольника ABC в точках C1, A1, B1. Прямые AI, CI, B1I пересекают A1C1 в точках X, Y, Z соответственно. Докажите, что  ∠YB1Z = ∠XB1Z.

Прислать комментарий     Решение

Задача 64906  (#4)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный.

Прислать комментарий     Решение

Задача 64907  (#5)

Темы:   [ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 8,9

На стороне AC треугольника ABC произвольно выбрана точка D. Касательная, проведённая в точке D к описанной окружности треугольника BDC, пересекает сторону AB в точке C1; аналогично определяется точка A1. Докажите, что  A1C1 || AC.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .