Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

На острове проживают 1234 жителя, каждый из которых либо рыцарь (который всегда говорит правду) либо лжец (который всегда лжёт). Однажды все жители острова разбились на пары, и каждый про своего соседа по паре сказал: "Он – рыцарь!", либо "Он – лжец!". Могло ли в итоге оказаться, что тех и других фраз произнесено поровну?

Вниз   Решение


Диаметр PQ и перпендикулярная ему хорда RS пересекаются в точке A. Точка C лежит на окружности, а точка B — внутри окружности, причем  BC || PQ и BC = RA. Из точек A и B опущены перпендикуляры AK и BL на прямую CQ. Докажите, что  SACK = SBCL.

ВверхВниз   Решение


Пусть на двух пересекающихся прямых l1 и l2 выбраны точки M1 и M2, не совпадающие с точкой пересечения M этих прямых. Поставим в соответствие им окружность, проходящую через M1, M2 и M.
Если (l1, M1), (l2, M2), (l3, M3) — прямые с выбранными точками в общем положении, то согласно задаче 2.80, а) три окружности, соответствующие парам (l1, M1) и (l2, M2), (l2, M2) и (l3, M3), (l3, M3) и (l1, M1), пересекаются в одной точке, которую мы поставим в соответствие тройке прямых с точками.
а) Пусть l1, l2, l3, l4 — четыре прямые общего положения, на каждой из которых задано по точке, причем эти точки лежат на одной окружности. Докажите, что четыре точки, соответствующие тройкам, получаемым отбрасыванием одной из прямых, лежат на одной окружности.
б) Докажите, что каждому набору из n прямых общего положения с заданными на них точками, лежащими на одной окружности, можно поставить в соответствие точку (при нечетном n) или окружность (при четном n) так, что n окружностей (точек при четном n), соответствующих наборам из n - 1 прямых, проходят через эту точку (лежат на этой окружности при четном n).

ВверхВниз   Решение


В треугольнике ABC проведена биссектриса BE и на стороне BC взята точка K так, что  $ \angle$AKB = 2$ \angle$AEB. Найдите величину угла AKE, если  $ \angle$AEB = $ \alpha$.

ВверхВниз   Решение


Дана пирамида АВСD (см. рис.). Известно, что
$ \triangle$ADB = $ \triangle$DBC;
$ \triangle$ABD = $ \triangle$BDC;
$ \triangle$BAD = $ \triangle$ABC.
Найдите площадь поверхности пирамиды (сумму площадей четырех треугольников), если площадь треугольника АВС равна 10 см2.

ВверхВниз   Решение


В треугольнике ABC угол C вдвое больше угла A и b = 2a. Найдите углы этого треугольника.

ВверхВниз   Решение


На биссектрисе угла A треугольника ABC взята точка A1 так, что  AA1 = p - a = (b + c - a)/2, и через точку A1 проведена прямая la, перпендикулярная биссектрисе. Если аналогично провести прямые lb и lc, то треугольник ABC разобьется на части, среди которых четыре треугольника. Докажите, что площадь одного из этих треугольников равна сумме площадей трех других.

ВверхВниз   Решение


Каждые два из n блоков ЭВМ соединены проводом. Можно ли каждый из этих проводов покрасить в один из  n – 1  цветов так, чтобы от каждого блока отходил  n – 1  провод разного цвета, если  а)  n = 6;  б)  n = 13?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 98224  (#М883)

Темы:   [ Раскраски ]
[ Принцип Дирихле (углы и длины) ]
[ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 9,10,11

В какое наименьшее число цветов нужно раскрасить клетки бесконечного листа клетчатой бумаги, чтобы
  а) каждые две клетки на расстоянии 6 были покрашены в разные цвета?

  б) каждые четыре клетки, образующие фигуру формы буквы Г, были покрашены в четыре разных цвета?
(Расстояние между клетками – наименьшее число линий сетки, горизонтальных и вертикальных, которые должна пересечь ладья на пути из одной клетки в другую.)

Прислать комментарий     Решение

Задача 97838  (#М885)

Темы:   [ Раскладки и разбиения ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 9,10,11

  Для каждого натурального n обозначим через P(n) число разбиений n в сумму натуральных слагаемых (разбиения, отличающиеся лишь порядком слагаемых, считаются одинаковыми; например,  P(4) = 5,  потому что  4 = 4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1  – пять способов).
  а) Количество различных чисел в данном разбиении назовем его разбросом (например, разбиение  4 = 1 + 1 + 2  имеет разброс 2, потому что в этом разбиении два различных числа). Докажите, что сумма Q(n) разбросов всех разбиений числа n равна   1 + P(1) + P(2) + ... + P(n–1).
  б) Докажите, что  

Прислать комментарий     Решение

Задача 65000  (#М893)

Темы:   [ Раскраски ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
Сложность: 3+

Каждые два из n блоков ЭВМ соединены проводом. Можно ли каждый из этих проводов покрасить в один из  n – 1  цветов так, чтобы от каждого блока отходил  n – 1  провод разного цвета, если  а)  n = 6;  б)  n = 13?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .