|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Просыпаясь каждое утро в 8.30, истопник набивает печку углём до упора. При этом он кладёт ровно 5 кг угля. Каждый вечер, ложась спать (а ложится спать он также в одно и то же время), он опять набивает печку углём до упора и кладёт при этом ровно 7 кг угля. Петя хочет выписать все возможные последовательности из 100 натуральных чисел, в каждой из которых хотя бы раз встречается тройка, а любые два соседних члена различаются не больше, чем на 1. Сколько последовательностей ему придётся выписать? |
Страница: << 1 2 [Всего задач: 8]
Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK – биссектриса этого треугольника. Описанная окружность треугольника AKB пересекает вторично сторону BC в точке L. Докажите, что CB + CL = AB.
Числа a, b, c и d таковы, что a² + b² + c² + d² = 4. Докажите, что (2 + a)(2 + b) ≥ cd.
Петя хочет выписать все возможные последовательности из 100 натуральных чисел, в каждой из которых хотя бы раз встречается тройка, а любые два соседних члена различаются не больше, чем на 1. Сколько последовательностей ему придётся выписать?
Страница: << 1 2 [Всего задач: 8] |
|||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|