ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Мальчик едет на самокате от одной автобусной остановки до другой и смотрит в зеркало, не появился ли сзади автобус. Как только мальчик замечает автобус, он может изменить направление движения. При каком наибольшем расстоянии между остановками мальчик гарантированно не упустит автобус, если он знает, что едет со скоростью, втрое меньшей скорости автобуса, и способен увидеть автобус на расстоянии не более 2 км?

Вниз   Решение


Из 101 далматинца у 29 пятно только на левом ухе, у 17 – только на правом ухе, а у 22 далматинцев нет пятен на ушах.
Сколько далматинцев имеют пятно на правом ухе?

ВверхВниз   Решение


Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.

ВверхВниз   Решение


У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета "1 рубль". Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета "2 рубля". Петя вытащил из кармана 5 монет. Назовите эти монеты.

ВверхВниз   Решение


Автор: Фольклор

Существуют ли 2016 целых чисел, сумма и произведение которых равны 2016?

ВверхВниз   Решение


Турнир Городов проводится раз в год. Сейчас год проведения осеннего тура делится на номер турнира:  2021:43 = 47.  Сколько ещё раз человечество сможет наблюдать это удивительное явление?

ВверхВниз   Решение


Докажите, что если  (m, 10) = 1,  то у десятичного представления дроби 1/m нет предпериода.

ВверхВниз   Решение


В конкурсе пения участвовали Петух, Ворона и Кукушка. Каждый член жюри проголосовал за одного из трех исполнителей. Дятел подсчитал, что в жюри было 59 судей, причём за Петуха и Ворону было в сумме подано 15 голосов, за Ворону и Кукушку – 18 голосов, за Кукушку и Петуха – 20 голосов. Дятел считает плохо, но каждое из четырёх названных им чисел отличается от правильного не более чем на 13. Сколько судей проголосовали за Ворону?

ВверхВниз   Решение


Покажите, как разрезать фигуру, изображённую на рисунке слева, на две равные части и сложить из этих частей фигуру, изображённую на рисунке справа.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 65493  (#6.1)

Темы:   [ Обыкновенные дроби ]
[ Квадратные уравнения. Формула корней ]
Сложность: 3+
Классы: 5,6,7

Замените $\ast$ одинаковыми числами так, чтобы равенство стало верным: $$\frac{20}{\ast} - \frac{\ast}{15} = \frac{20}{15}$$
Прислать комментарий     Решение


Задача 65494  (#6.2)

Темы:   [ Текстовые задачи (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 5,6,7

Из 101 далматинца у 29 пятно только на левом ухе, у 17 – только на правом ухе, а у 22 далматинцев нет пятен на ушах.
Сколько далматинцев имеют пятно на правом ухе?

Прислать комментарий     Решение

Задача 65495  (#6.3)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 5,6,7

Покажите, как разрезать фигуру, изображённую на рисунке слева, на две равные части и сложить из этих частей фигуру, изображённую на рисунке справа.

Прислать комментарий     Решение

Задача 65496  (#6.4)

Темы:   [ Текстовые задачи (прочее) ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 5,6,7

На полке стоят, плотно прилегая друг к другу, две книги по 250 листов в каждой (см. рисунок). Каждая из обложек в 10 раз толще бумаги, на которой напечатаны обе книги. В каждую книгу вложена закладка. Расстояние между закладками втрое меньше общей толщины двух книг. Между какими листами лежит закладка во второй книге, если в первой книге она лежит посередине?

Прислать комментарий     Решение

Задача 65497  (#6.5)

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 5,6,7

На школьный Новогодний праздник в городе Лжерыцарске пришёл 301 ученик. Из них некоторые всегда говорят правду, а остальные – всегда лгут. Каждый из 200 школьников сказал: "Если я выйду из зала, то среди оставшихся учеников большинство будет лжецами". Каждый из остальных школьников заявил: "Если я выйду из зала, то среди оставшихся учеников лжецов будет вдвое больше, чем говорящих правду". Сколько лжецов было на празднике?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .