Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

а) В треугольнике ABC проведены высоты AA1, BB1 и CC1. Прямые AB и A1B1BC и B1C1CA и C1A1 пересекаются в точках C', A' и B'. Докажите, что точки A', B' и C' лежат на радикальной оси окружности девяти точек и описанной окружности.
б) Биссектрисы внешних углов треугольника ABC пересекают продолжения противоположных сторон в точках A', B' и C'. Докажите, что точки A', B' и C' лежат на одной прямой, причем эта прямая перпендикулярна прямой, соединяющей центры вписанной и описанной окружностей треугольника ABC.

Вниз   Решение


Докажите, что диагонали AD, BE и CF описанного шестиугольника ABCDEF пересекаются в одной точке (Брианшон).

ВверхВниз   Решение


Даны окружность S и прямая l, не имеющие общих точек. Из точки P, движущейся по прямой l, проводятся касательные PA и PB к окружности S. Докажите, что все хорды AB имеют общую точку.



ВверхВниз   Решение


Некоторое количество точек расположено на плоскости так, что каждые 3 из них можно заключить в круг радиуса r = 1. Доказать, что тогда и все точки можно заключить в круг радиуса 1.

ВверхВниз   Решение


На сторонах BC и AC треугольника ABC взяты точки A1 и B1l — прямая, проходящая через общие точки окружностей с диаметрами AA1 и BB1. Докажите, что:
а) прямая l проходит через точку H пересечения высот треугольника ABC;
б) прямая l тогда и только тогда проходит через точку C, когда  AB1 : AC = BA1 : BC.

ВверхВниз   Решение


Докажите, что сумма двух нагелиан больше полупериметра треугольника.

ВверхВниз   Решение


Найти такие отличные от нуля неравные между собой целые числа a, b, c, чтобы выражение  x(xa)(xb)(xc) + 1  разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами.

ВверхВниз   Решение


Катеты прямоугольного треугольника равны 12 и 16. Найдите высоту, проведённую из вершины прямого угла.

ВверхВниз   Решение


Решите задачу 1.67, используя свойства радикальной оси.

ВверхВниз   Решение


Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10.

ВверхВниз   Решение


У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

ВверхВниз   Решение


Сумма вычитаемого, уменьшаемого и разности равна 2016. Найдите уменьшаемое.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 557]      



Задача 65214

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2+
Классы: 7,8

Можно ли разрезать квадрат 5×5 на прямоугольники двух видов: 1×4 и 1×3 так, чтобы получилось 7 прямоугольников?

Прислать комментарий     Решение

Задача 65219

Темы:   [ Периметр треугольника ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 2+
Классы: 7,8

На сторонах угла ABC отмечены точки М и K так, что углы BMC и BKA равны,  BM = BK,  AB = 15,  BK = 8,  CM = 9.
Найдите периметр треугольника СOK, где O – точка пересечения прямых AK и СМ.

Прислать комментарий     Решение

Задача 65653

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8,9

Сумма вычитаемого, уменьшаемого и разности равна 2016. Найдите уменьшаемое.

Прислать комментарий     Решение

Задача 65654

Темы:   [ Четырехугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Прислать комментарий     Решение

Задача 65953

Темы:   [ Десятичная система счисления ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 8,9

Сколько существует восьмизначных чисел, в записи которых цифры идут в порядке убывания?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .