Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Вниз   Решение


20 команд сыграли круговой турнир по волейболу.
Докажите, что команды можно занумеровать числами от 1 до 20 так, что 1-я команда выиграла у 2-й, 2-я – у 3-й, ..., 19-я – у 20-й.

ВверхВниз   Решение


Известно, что число 2333 имеет 101 цифру и начинается с цифры 1. Сколько чисел в ряду 2, 4, 8, 16, ..., 2333 начинается с цифры 4?

ВверхВниз   Решение


Автор: Белухов Н.

Даны два единичных куба с общим центром. Всегда ли можно занумеровать вершины каждого из кубов от $1$ до $8$ так, чтобы расстояние между любыми двумя вершинами с одинаковыми номерами не превышало $\frac{4}{5}$? А чтобы не превышало $\frac{13}{16}$?

ВверхВниз   Решение


а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
б) Какой максимальной длины кусок проволоки можно вырезать из этого каркаса? (Длина ребра куба равна 1 см.)

ВверхВниз   Решение


Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точках A и B, причем центр O окружности S1 лежит на S2. Прямая, проходящая через точку O, пересекает отрезок AB в точке P, а окружность S2 в точке C. Докажите, что точка P лежит на поляре точки C относительно окружности S1.

ВверхВниз   Решение


Точка K – середина стороны AB квадрата ABCD, а точка L делит диагональ AC в отношении  AL : LC = 3 : 1.  Докажите, что угол KLD прямой.

ВверхВниз   Решение


Найти все многочлены P(x), для которых справедливо тождество:  xP(x – 1) ≡ (x – 26)P(x).

ВверхВниз   Решение


Известно, что значения выражений b/a и b/c находятся в интервале  (–0,9, –0,8).  В каком интервале лежат значения выражения c/a?

ВверхВниз   Решение


Можно ли построить три дома, вырыть три колодца и соединить тропинками каждый дом с каждым колодцем так, чтобы тропинки не пересекались?

ВверхВниз   Решение


Можно ли разрезать квадрат 5×5 на прямоугольники двух видов: 1×4 и 1×3 так, чтобы получилось 7 прямоугольников?

ВверхВниз   Решение


а) Докажите, что середины четырех общих касательных к двум непересекающимся кругам лежат на одной прямой.
б) Через две из точек касания общих внешних касательных с двумя окружностями проведена прямая. Докажите, что окружности высекают на этой прямой равные хорды.

ВверхВниз   Решение


Докажите, что  x² + y² + z² ≥ xy + yz + zx  при любых x, y, z.

ВверхВниз   Решение


Докажите, что для плоского графа справедливо неравенство  2E ≥ 3F.

ВверхВниз   Решение


В строке записано несколько чисел. Каждую секунду робот выбирает какую-либо пару рядом стоящих чисел, в которой левое число больше правого, меняет их местами и при этом умножает оба числа на 2. Докажите, что через некоторое время сделать очередную такую операцию будет невозможно.

ВверхВниз   Решение


В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m?

ВверхВниз   Решение


В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь).

ВверхВниз   Решение


Постройте n-угольник, если известны n точек, являющихся вершинами равнобедренных треугольников, построенных на сторонах этого n-угольника и имеющих при вершинах углы $ \alpha_{1}^{}$,...,$ \alpha_{n}^{}$.

ВверхВниз   Решение


Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, разбивает треугольник на два подобных треугольника.

ВверхВниз   Решение


Докажите, что композиция двух поворотов на углы, в сумме не кратные  360o, является поворотом. В какой точке находится его центр и чему равен угол поворота? Исследуйте также случай, когда сумма углов поворотов кратна  360o.

ВверхВниз   Решение


Автор: Ивлев Ф.

Пусть $A_1$, $B_1$, $C_1$ – середины сторон $BC$, $AC$ и $AB$ треугольника $ABC$, $K$ – основание высоты, проведенной из вершины $A$, а $L$ – точка касания вписанной окружности $\gamma$ со стороной $BC$. Описанные окружности треугольников $LKB_1$ и $A_1LC_1$ вторично пересекают прямую $B_1C_1$ в точках $X$ и $Y$ соответственно. Окружность $\gamma$ пересекает эту прямую в точках $Z$ и $T$. Докажите, что $XZ = YT$.

ВверхВниз   Решение


Сколько существует восьмизначных чисел, в записи которых цифры идут в порядке убывания?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 557]      



Задача 65214

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2+
Классы: 7,8

Можно ли разрезать квадрат 5×5 на прямоугольники двух видов: 1×4 и 1×3 так, чтобы получилось 7 прямоугольников?

Прислать комментарий     Решение

Задача 65219

Темы:   [ Периметр треугольника ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 2+
Классы: 7,8

На сторонах угла ABC отмечены точки М и K так, что углы BMC и BKA равны,  BM = BK,  AB = 15,  BK = 8,  CM = 9.
Найдите периметр треугольника СOK, где O – точка пересечения прямых AK и СМ.

Прислать комментарий     Решение

Задача 65653

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8,9

Сумма вычитаемого, уменьшаемого и разности равна 2016. Найдите уменьшаемое.

Прислать комментарий     Решение

Задача 65654

Темы:   [ Четырехугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Прислать комментарий     Решение

Задача 65953

Темы:   [ Десятичная система счисления ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 8,9

Сколько существует восьмизначных чисел, в записи которых цифры идут в порядке убывания?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .