ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Докажите тождество:
Существуют ли на плоскости три такие точки A, B и C, что для
любой точки X длина хотя бы одного из
отрезков XA, XB и XC иррациональна?
В треугольник вписана окружность. Около неё описан квадрат. Докажите, что вне
треугольника лежит меньше половины периметра квадрата.
Может ли конечный набор точек содержать для
каждой своей точки ровно 100 точек, удаленных от нее на
расстояние 1?
Двое по очереди ставят слонов в клетки шахматной доски так, чтобы слоны не били друг друга. (Цвет слонов значения не имеет). Проигрывает тот, кто не может сделать ход.
Выпуклый многоугольник разрезан непересекающимися диагоналями на равнобедренные треугольники. Числа a0, a1,..., an,... определены следующим образом:
a0 = 2, a1 = 3, an + 1 = 3an - 2an - 1 (n Найдите и докажите формулу
для этих чисел.
Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC – точка E так, что DE || AC. Точки P и Q на меньшей дуге AC окружности ω таковы, что DP || EQ. Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что ∠XBY + ∠PBQ = 180°. |
Страница: << 1 2 [Всего задач: 8]
Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число 1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей.
Выпуклый многоугольник разрезан непересекающимися диагоналями на равнобедренные треугольники.
Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC – точка E так, что DE || AC. Точки P и Q на меньшей дуге AC окружности ω таковы, что DP || EQ. Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что ∠XBY + ∠PBQ = 180°.
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке