ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На ось Ox плоскости Oxy положили N прямоугольников. Требуется найти координаты вершин ломаной, огибающей это множество прямоугольников сверху (см. рис.). Входные данные Первая строка входного файла содержит целое число N (1 ≤ N ≤ 100). Далее следуют N строк, в каждой из которых записана тройка вещественных чисел, описывающих очередной из прямоугольников. Первое из них задает абсциссу левого нижнего угла прямоугольника, а остальные два – его длину и высоту. Выходные данные В первую строку выходного файла выведите количество вершин искомой ломаной. Далее укажите сами вершины в порядке неубывания абсциссы. Каждая вершина задается своими координатами, записанными через пробел в отдельной строке выходного файла. Никакие два звена ломаной не должны лежать на одной прямой. Пример входного файла 2 0 4 2 2 4 5 Пример выходного файла 6 0 0 0 2 2 2 2 5 6 5 6 0 Решение В ряд стоят 100 детей разного роста. Разрешается выбрать любых 50 детей, стоящих подряд, и переставить их между собой как угодно (остальные остаются на своих местах). Как всего за шесть таких перестановок гарантированно построить всех детей по убыванию роста слева направо? Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]
В каждой клетке доски 8×8 написали по одному натуральному числу. Оказалось, что при любом разрезании доски на доминошки суммы чисел во всех доминошках будут разные. Может ли оказаться, что наибольшее записанное на доске число не больше 32?
100 ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине некоторым (кому хочет) из остальных. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?
Докажите, что на графике любого квадратного трёхчлена со старшим коэффициентом 1, имеющего ровно один корень, найдётся такая точка (p, q), что трёхчлен x² + px + q также имеет ровно один корень.
Из вершины A остроугольного треугольника ABC по биссектрисе угла A выпустили бильярдный шарик, который отразился от стороны BC по закону "угол падения равен углу отражения" и дальше катился по прямой, уже ни от чего не отражаясь. Докажите, что если ∠A = 60°, то траектория шарика проходит через центр описанной окружности треугольника ABC.
В ряд стоят 100 детей разного роста. Разрешается выбрать любых 50 детей, стоящих подряд, и переставить их между собой как угодно (остальные остаются на своих местах). Как всего за шесть таких перестановок гарантированно построить всех детей по убыванию роста слева направо?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|