Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В треугольнике ABC сторона BC равна полусумме двух других сторон. Через точку A и середины B', C' сторон AB и AC проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром I вписанной окружности треугольника ABC.

Вниз   Решение


В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.

ВверхВниз   Решение


Четырёхугольник $ABCD$ вписан в окружность. Лучи $BA$ и $CD$ пересекаются в точке $P$. Прямая, проходящая через $P$ и параллельная касательной к окружности в точке $D$, пересекает в точках $U$ и $V$ касательные, проведённые к окружности в точках $A$ и $B$. Докажите, что окружности, описанные около треугольника $CUV$ и четырёхугольника $ABCD$, касаются.

ВверхВниз   Решение


Из одной точки окружности проведены две хорды, равные 9 и 17. Найдите радиус окружности, если расстояние между серединами данных хорд равно 5.

ВверхВниз   Решение


Докажите, что любой прямоугольник можно разрезать на части и сложить из них прямоугольник со стороной 1.

ВверхВниз   Решение


Из высот остроугольного треугольника можно составить треугольник. Докажите, что из его биссектрис тоже можно составить треугольник.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 66265  (#9.6)

Темы:   [ Замечательное свойство трапеции ]
[ Гомотетия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы между биссектрисами ]
Сложность: 3+
Классы: 8,9,10

Автор: Тимохин М.

Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что  AM = MD.  Докажите, что  ∠PMB = ∠QMB.

Прислать комментарий     Решение

Задача 66266  (#9.7)

Темы:   [ Неравенства с высотами ]
[ Неравенства с биссектрисами ]
Сложность: 4-
Классы: 8,9,10

Из высот остроугольного треугольника можно составить треугольник. Докажите, что из его биссектрис тоже можно составить треугольник.

Прислать комментарий     Решение

Задача 66267  (#9.8)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Инверсия помогает решить задачу ]
[ Точка Нагеля. Прямая Нагеля ]
[ Теоремы Чевы и Менелая ]
Сложность: 5-
Классы: 9,10,11

Диагонали вписанного четырёхугольника ABCD пересекаются в точке M. Окружность ω касается отрезка MA в точке P, отрезка MD в точке Q и описанной окружности Ω четырёхугольника ABCD в точке X. Докажите, что X лежит на радикальной оси описанных окружностей ωQ и ωP треугольников ACQ и BDP.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .