ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Про треугольник $ABC$ известно, что точка, симметричная ортоцентру относительно центра описанной окружности, лежит на стороне $BC$. Пусть $A_1$ – основание высоты, проведенной из точки $A$. Докажите, что $A_1$ лежит на окружности, проходящей через середины трёх высот треугольника $ABC$. Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток). У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть? В клетках доски n×n произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на n + 1. В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)
AK – биссектриса треугольника ABC, P и Q – точки на двух других биссектрисах (или на их продолжениях) такие, что PA = PK и QA = QK. Снегирь. Итак, мама воскликнула — «Чудеса!», и сразу же мама, папа и дети отправились в зоомагазин. «Но здесь больше пятидесяти снегирей, как мы выберем», — чуть не заплакал младший брат, увидев снегирей. «Не волнуйся», — сказал старший, — «их меньше пятидесяти». «Главное,» — сказала мама, — «что здесь есть хотя бы один!» «Да, забавно,» — подытожил папа, — «из трех ваших фраз только одна соответствует действительности». Сможете ли Вы сказать, сколько снегирей было в магазине, зная, что снегиря мне купили? Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.
Раскрасьте рисунок в четыре цвета так, чтобы соседние части были покрашены в разные цвета.
В таблице 10×10 по порядку расставлены числа от 0 до 99 (в первой строке – от 0 до 9, во второй – от 10 до 19 и т.д.). Затем перед каждым из чисел поставлен знак "+" или "–" так, что в каждой строке и каждом столбце оказалось по пять знаков "+" и пять знаков "–". Чему может быть равна сумма всех чисел таблицы с учетом расставленных знаков?Разрежьте квадрат на три части, из которых можно сложить треугольник с тремя острыми углами и тремя различными сторонами.
В стране рыцарей (всегда говорят правду) и лжецов (всегда лгут) за круглым столом сидят в вершинах правильного десятиугольника 10 человек, среди которых есть лжецы. Путешественник может встать куда-то и спросить сидящих: "Каково расстояние от меня до ближайшего лжеца из вас?" После этого каждый отвечает ему. Какое минимальное количество вопросов должен задать путешественник так, чтобы гарантированно узнать, кто за столом лжецы? (Посторонних рядом нет, на стол вставать нельзя. Людей считайте точками. Все, включая путешественника, могут точно измерить любое расстояние.) У Джузеппе есть лист фанеры, размером 22×15. Джузеппе хочет из него вырезать как можно больше прямоугольных заготовок размером 3×5. Как это сделать? Дан треугольник ABC. Найдите внутри его точку O, для которой сумма
длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот
случай, когда один из углов треугольника больше
120o.)
Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.
Два рыбака поймали 80 рыб, причём 5/9 улова первого составляли караси, а 7/11 улова второго – окуни. Сколько рыб поймал каждый из них?
В трапеции ABCD (
BC
На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$. Найдите внутри треугольника ABC точку O, для которой сумма
квадратов расстояний от нее до сторон треугольника минимальна.
Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.)
Разрежьте данную фигуру (см. рисунок) на три равных фигуры.
Город представляет из себя клетчатый прямоугольник, в каждой клетке стоит пятиэтажный дом. Закон о реновации позволяет выбрать две соседних по стороне клетки, в которых стоят дома, и снести тот дом, где меньше этажей (либо столько же). При этом над вторым домом надстраивается столько этажей, сколько было в снесённом доме. Какое наименьшее число домов можно оставить в городе, пользуясь законом о реновации, если город имеет размеры |
Страница: << 1 2 [Всего задач: 7]
Вписанная окружность касается сторон $AB, BC$ и $AC$ треугольника $ABC$ в точках $N, K$ и $M$ соответственно. Прямые $MN$ и $MK$ пересекают биссектрису внешнего угла $B$ в точках $R$ и $S$ соответственно. Докажите, что прямые $RK$ и $SN$ пересекаются на вписанной окружности треугольника $ABC$.
Город представляет из себя клетчатый прямоугольник, в каждой клетке стоит пятиэтажный дом. Закон о реновации позволяет выбрать две соседних по стороне клетки, в которых стоят дома, и снести тот дом, где меньше этажей (либо столько же). При этом над вторым домом надстраивается столько этажей, сколько было в снесённом доме. Какое наименьшее число домов можно оставить в городе, пользуясь законом о реновации, если город имеет размеры
Страница: << 1 2 [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке